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Chapter 1. Introduction 

This report is the fourth deliverable for the National ICTR&D funded research project titled 

“Design and development of Intelligent Mobile Robots (IMRs) for disaster mitigation and 

firefighting”.  

 

1) Problems faced in interfacing the DC motor with the IMR.·    

Test performance of the IMR in an artificial environment where some objects will be put on fire. 

 

Complete design of the IMR which is capable of performing basic fire fighting tasks. 

A prototype capable for initial testing. 

 

2) All the bottlenecks faced in the hardware interfacing will be reported. 
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Chapter 2. Using ROS with MUSAFIR (the miniature 

robot) 

2.1 Robotics for Academia 
 Robotics is a multi-disciplinary field and for any researcher to do robotics related work, 

there comes a time when it is time to move from simulation to the real world and verify that the 

system behaves as it is supposed to and is controllable and repeatable. For such hardware based 

work, there are several options which depend on the need, complexity requirement, cost factor 

and allocated budget. As any such ready to sue solutions are not made in the country and buying 

from US or other foreign countries means spending exorbitant sums of money for very few and 

small robots. Also, buying readymade robotic kits results in no advancement of knowledge with 

respect to design and development of the robotics hardware. 

In this chapter, we are providing detailed information about the robots that we have developed 

and step by step procedure for using them for research work. Our work comprises of hardware 

robots that we have indigenously designed in our lab and are called “MUSAFIR” Robots. The 

robots are controllable by several different systems and languages as the Robots are ROS 

compatible, this allows for use of C, C++, Python, MATLAB among many other options for 

command and control of the MUSAFIR Robots. 

 

2.1.1 ROS (Robot Operating System) 

ROS or Robot Operating System is a software framework for working with robots and automated 

systems. ROS allows for integration of multiple complex systems and computers into one 

network where all relevant information of sensors, actuators and controllers is accessible to all 

services and running processes. A generic block diagram of a ROS based robot is given in figure 

2.1 as an example. 
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Figure 2.1: Generic ROS based Robotics System Components\ 

2.1.1 MUSAFIR Robot 

MUSAFIR Robots are indigenous robots developed at IMR LAB PAF KIET for the purpose of 

academic research work. These robots are developed as either blank platforms with motor 

control and wireless communication or as full-fledged sensory platforms for indoor and outdoor 

localization and mapping based research work. 

The Sensor/Actuator suite integrated with MUSAFIR Robot are: 

● 2x DC Motors, Geared with Encoders for Differential Drive 
● 2x Motor Drivers 
● Odometery via Encoders 
● 3-Axis Accelerometer 
● 3-Axis Gyroscope 
● 3-Axis Magnetometer 
● GPS Module 
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● 360 Degree LIDAR Sensor - RP LIDAR A2 
● Ultrasonic Rangefinders 
● Microphone 
● Speaker 
● Temperature Sensors 
● Thermal Imaging Camera 
● 2x Camera Stereo Configuration on Front 
● Raspberry PI 3 Computer for High Level Processing 
● Wi-Fi Connectivity 
● 8-Bit Microcontroller for Low-Level Control 
● 12V Recharge-able Battery 
● Power Failure Protection Circuitry - Over Current / Under Voltage 

 

2.1.2 MUSAFIR and ROS Integration Goals 

As mentioned above, the MUSAFIR robot is a complex system with high integration of various 

modules and components. Writing control software for such a system from scratch is a huge 

project on its own. However, we tested each component and module individually and then 

integrated these to serve as one robotic platform by means of integrating with the ROS 

Framework. Our goal is to make MUSAFIR fully ROS compatible and have a ready to use driver 

available in ROS repository for the MUSAFIR robot. 

 

2.2 System Requirements 
In order to be able to use MUSAFIR in a lab environment, the following requirements must be 

met and it is expected that the user is familiar with programming languages (C, C++, Python), 

familiarity with Linux Environment, Scripting, MATLAB and Computer Networking concepts. 

2.2.1 System Level Components 

For working with MUSAFIR Robots, the minimum requirement is that there be a working Wi-Fi 

Network to which the MUSAFIR Robot will connect and publish all information, as shown in 

figure 2.2. A USER PC is also required which will provide a user interface to the user. An 

additional LINUX Server system with high performance is recommended for most of high level 

processing, map making and data logging. 
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Figure 2.2: Minimum Requirement for MUSAFIR/ROS based System 

2.2.2 Network Requirements 

A working Wi-Fi Network with Internet access is require. ROS requires proper network 

connectivity between all systems with bi-directional communication and no lag or latency issues. 

We have tested the system with a D-Link Wireless Router DIR-822 in the lab and a Zong 4G 

Modem/Wi-Fi Router in outdoor setting. From ROS Wiki, the network requirements are given 

as; 

ROS is a distributed computing environment. A running ROS system can comprise dozens, even 

hundreds of nodes, spread across multiple machines. Depending on how the system is 

configured, any node may need to communicate with any other node, at any time. 

As a result, ROS has certain requirements of the network configuration: 

● There must be complete, bi-directional connectivity between all 
pairs of machines, on all ports. 

● Each machine must advertise itself by a name that all other 
machines can resolve.  

2.2.3 Using with Windows PC 

As ROS itself is mainly supported only on Linux based systems, running 

ROS in Windows requires MATLAB with Robotics Toolbox installed, we have 

tested with MATLAB 2015b and 2016b both with Robotics Toolbox installed, 

which has a ROS node built-in and can make a connection between the MATLAB 

environment and the running ROS Nodes and Topics. 

2.2.4 Using with Linux PC 

ROS installation on Linux is straightforward, depending on the Linux 

distribution that is in use, the installation can be from either the apt repositories 

where a pre-compiled version is available or by compiling from source files 

directly available at the online official ROS repository. 
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ROS suggests installation of Kinetic Kame, the current latest variant, which also has LTS (Long 

Term Support) on Ubuntu 16.04, which is also the latest LTS version from Canonical. To install 

ROS, follow the below steps. 

Run these commands in a Terminal Window 

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu 
$(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-
latest.list' 

 
sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 
--recv-key 421C365BD9FF1F717815A3895523BAEEB01FA116 
 
sudo apt-get update 
sudo apt-get install ros-kinetic-desktop-full 
sudo rosdep init 
rosdep update 
 
echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc 
source ~/.bashrc 
sudo apt-get install python-rosinstall 

 

 

2.3 ROS Setup and Configuration 
After installation ROS dependencies need to be added to the environment and other ROS 

variables needed to be updated and added/appended to the system PATH variables for proper 

working of ROS executables. 

Run these commands in a Terminal Window 

sudo rosdep init 
rosdep update 
echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc 
source ~/.bashrc 
sudo apt-get install python-rosinstall 
 
Running these commands will initialize the ROS dependencies in the system and will 

also additionally add the ROS variables to the bashrc file which loads whenever a new terminal 

is opened so that ROS variables are always available. python-rosinstall allows for easy 

installation of ROS packages from the official online repositories. 

2.3.1 IP Address Configuration 

IP Address of the system needs to be known where the roscore will run, roscore is the main ROS 

executable which does the handshaking between all the nodes and keeps a list of running nodes 

and topics. To get the IP address of the system, use the command ifconfig on Linux. Make 
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sure to note IP address of the correct Ethernet/Wi-Fi interface as in a typical system there are 

several network interfaces available. 

For the rest of this report, we will assume that the main system where ROS (roscore) is running 

has the IP address: 192.168.100.161, the user Laptop which has Linux has the IP address 

192.168.100.162 and the Musafir Bot has the IP address 192.168.100.165 

2.3.2 IP Address Configuration 

For ROS, there needs to be one system which will run roscore and the other systems including 

the system (Raspberry Pi) on the robot needs to be in the same network and IPs of all systems 

known. The main system IP address where roscore will run needs to be added/exported as 

environment variable to Linux terminals as ROS_MASTER_URI using the below command 

export ROS_MASTER_URI=http://IP_OF_SYSTEM:11311 

(where 11311 is the default port number of ROS) 

2.3.3 ROS Initialization 

For starting with ROS, on every system in the network where any ROS node will be working, 

there needs to be some environment variables present, hence the below commands should be 

done on the systems whenever a new terminal is started when working with ROS 

On Main LINUX System – SERVER  - IP is 192.168.100.161 
export ROS_MASTER_URI=http://192.168.100.161:11311 
export ROS_HOSTNAME=192.168.100.161 
source ~/catkin_ws/devel/setup.bash 
 
On PI, do this - IP of Pi is 192.168.100.165 
export ROS_MASTER_URI=http://192.168.100.161:11311 
export ROS_HOSTNAME=192.168.100.165 
source ~/catkin_ws/devel/setup.bash 
 
On USER LAPTOP LINUX System – USER - IP is 192.168.100.162 
export ROS_MASTER_URI=http://192.168.100.161:11311 
export ROS_HOSTNAME=192.168.100.162 
source ~/catkin_ws/devel/setup.bash 

 

Upon running the above commands starting ROS nodes on any of the systems or visualizing data 

becomes straightforward. On Main SERVER System, we run the roscore and the mapping 

server, all in different terminals. 

roscore 
roslaunch hector_mapping mapping_default.launch 
 

On the Robot System, Raspberry Pi, we run the following nodes, all in different terminals. 
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cgps -s 
roslaunch i2c_imu i2c_imu_auto.launch 
rosrun gpsd_client gpsd_client 
roslaunch rplidar_ros rplidar.launch 
python ~/catkin_ws/src/musafir/motor.py 

 

On the USER Laptop System, we run the teleoperation node and then we can also run any 

visualizations with rqt plot and rviz nodes. 

rosrun teleop_twist_keyboard teleop_twist_keyboard.py 
 

2.4 TEST Run 
After running the previous commands in the various terminal windows across the different 
systems, the MUSAFIR Bot is ready for a test run,. 

2.4.1 TeleOperation of Robot 

The TeleOp Node terminal window provides the input required for the user to move the robot 

manually. 

 
The TeleOp node publishes velocity commands as standard Twist Messages. 

Published Topic 
/cmd_vel 
Type: geometry_msgs/Twist - 
http://docs.ros.org/api/geometry_msgs/html/msg/Twist.html 
This expresses velocity in free space broken into its linear and angular parts. 
Vector3  linear 
Vector3  angular 
2.4.2 Robot Pose Visualization 

The robot Pose can be visualized in the rviz application. The robot Pose is visualized as 

an arrow in 2D space, pointing towards where the robot front is facing and starting from 

where the robot base is located. 
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2.5 ROS and MATLAB  
Running ROS along with MATLAB requires that either MATLAB be the main ROS node, 
roscore or be part of the ROS network as a regular ROS node. Installing MATLAB with the 
Robotics ToolBox also installs ROS support in MATLAB versions 2015 and 2016. 

 
2.5.1 roscore on MATLAB 

The MATLAB command for running ROS as the MASTER node or as a normal ROS node is the 

same, depending on the parameters, the node behaves differently. 

rosinit() 

initializes ROS with roscore on the same system as MATLAB 

2.5.2 MATLAB as ROS Node 

By providing an IP address to the rosinit command and NodeHost parameter with IP of 

MATLAB system, the rosinit creates a MATLAB ROS node and connects to the MASTER ROS 

system. 

rosinit('192.168.100.161', 'NodeHost','192.168.100.166') 
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Chapter 3. Problems and challenges with the design of 

MUSAFIR 

In order to design and build robots for the IMR project, we need to test several algorithms and 

work on several different sensing techniques. In order to be able to reliably and repeatedly test 

the algorithms, we needed a test robotic platform. Musafir is the result of that need. 

 

3.1 MUSAFIR Robot 
3.1.1 Features 

The Musafir design is mainly inspired from some similar academic commercial bots, which are 

too expensive. We selected to mimic Khepera robots as these robots are also the ones used by 

other robotics labs around the world. 

Musafir robot is expected to be built in a fraction of the cost and we are working to make 4 such 

robots, so that most of the collaborative control, SLAM and swarm algorithms can be tested, 

most configurations require at least 3 to 4 robots. 

In order to design and build a new robotics platform, specifications need to be written and laid 

out before starting the work. Musafir robots are expected to have several built-in sensors and 

communication methods. 

• Re-Chargeable Battery 

• Round/Circular/Symmetric Design 

• IR/Sonar sensor skirt around the bot 

• Differential Drive Motors with Encoders 

• IMU (Gyro + Accelerometer) + Compass Sensor 

• Wireless Communication 

• Motor Driver - MOSFET Based 

• On-board computer/camera for further processing and SLAM – OPTIONAL 

With these specifications, the design was broken into 3 main steps, initially a very basic robotic 

platform with motors and wireless control and minimum sensors will be implemented, then the 

design will be refined and more sensors (sensor skirt) will be added to the bot, finally, in the 

third stage the robot will be equipped with a computer (Raspberry Pi) and a camera, given time 

and budget constraints, this step will be done last and is optional. 



14 
 

3.2 MUSAFIR Variants 
Over the course of this project, IMR Lab has produced three variants of MUSAFIR up till now, 

named as MUSAFIR V1a, MUSAFIR V1b and MUSAFIR V2 respectively. In the next section, 

we will go through all of them sequentially highlighting specifications of them and the issues 

faced during implementation phase.  

3.3 MUSAFIR V1 (a and b) 
There are two models of MUSAFIR robot, v1 and v2, however while making v1, we 

implemented changes and improvements as we were designing and using the MUSAFIR robots, 

hence even the v1 has two variants, v1 (a) and v1 (b). 

3.3.1 MUSAFIR V1 (a) Specifications 

3.3.1.1 Accurate Odometry 

The motors selected to be used in Musafir are DC Gear motors with built-in encoders, these 

motors were selected after a thorough selection process and criteria refining, we needed the 

motor to run at 12V and have strong torque with slow outer speed. For odometry calculation, 

encoders were necessary. Encoders can be externally connected to a motor as well, but with 

built-in encoders, high precision is achieved in determining motor shaft rotation. The selected 

motors were then imported from china. 

3.3.1.2 RF Link 

The Radio Frequency link is being operated at 2.4 GHz with data rate of 250 Kilobits per second. 

The module in use is nRF24L01+. Range of the transceiver is 0.8 KM. 

3.3.1.3 Battery Capacity 

In MUSAFIR V1, 4S 2800 mAH batteries were used. These are Lithium polymer RC batteries 

(as indicated in the picture). 

  

3.3.1.4 2-Tiered 8-Bit Controller 

The Musafir electronics were designed in a very modular manner with the ease of usage and 

assembly in mind along with separation of tasks among boards and the different controllers, so 

that programming the firmware would then be distributed as separate tasks. The electronics is 

basically distributed into Power, Motor Drivers, Motor Controller, Sensor Controller, Main 

Controller and RF Controller (on PC Side). 

  

3.3.1.5 9-axis IMU 

MPU-9250 is a multi-chip module integrated into a single QFN package. One die houses the 3-

Axis gyroscope and the 3-Axis accelerometer. The other die houses the AK8963 3-Axis 

magnetometer. Hence, the MPU-9250 is a 9-axis Motion Tracking device that combines a 3-axis 
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gyroscope, 3-axis accelerometer, 3-axis magnetometer and a Digital Motion Processor. MPU-

9250 features three 16-bit analog-to-digital converters (ADCs) for digitizing the gyroscope 

outputs, three 16-bit ADCs for digitizing the accelerometer outputs, and three 16-bit ADCs for 

digitizing the magnetometer outputs. 

3.3.1.6 Motor Modes  

With improved motor driving circuit, there are two modes of operation: PWM without feedback, 

and constant velocity mode) 

  

3.3.2 MUSAFIR v1 (b) Specifications/Features 

3.3.2.1 Addition of Raspberry Pi 

The major change from MUSAFIR V1A to V1B is the addition of Raspberry Pi, a small palm-

sized computer. This addition made other arduino boards redundant so the Robot Controller 

Arduino Mega and RF Controller Arduino which was being used for serial communication 

between PC and MUSAFIR has been removed from the platform. 

3.3.2.2 Added GPS 

In MUSAFIR V1B, GPS has been added and interfaced with Raspberry Pi to get better 

positioning indoor and outdoor. After 10-12 seconds of triangulation process it produces lat-long 

data with +-10m accuracy. 

  

3.3.2.3 Added LIDAR 

The RPLIDAR A2 360° Laser Scanner is the next generation of 2D LIDAR. The RPLIDAR A2 

adopts low cost laser triangulation measurement system developed by SLAMTEC, and therefore 

has excellent performance in all kinds of indoor environments and outdoor environments without 

direct sunlight exposure. It can take up to 4000 samples of laser ranging per second with high 

rotation speed. 

  

3.3.2.4 IMU filters  

An inertial measurement unit, or IMU, measures accelerations and rotation rates, and possibly 

earth’s magnetic field, in order to determine a body’s attitude. Three basic filter approaches are 

applied, e.g. the complementary filter, the Kalman filter (with constant matrices), and the 

Mahony&Madgwick filter. 

3.3.2.5 Sensor Fusion 

In MUSAFIR V1B, we have been capable of fusing IMU, odometry and GPS data together in 

hardware, to get accurate whereabouts of the robot. 
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3.3.2.6 Tire Width Increased 

To obtain grip on indoor environment, tire contact area with floor has been doubled. 

Size & Weight 

Length: 257 MM, Width: 255 MM, Height: 160 MM 

3.4 MUSAFIR V1 Issues 
 

3.4.1 Uneven Surface 

Upon testing the MUSAFIR outside lab environment, we have noticed that the slippage increases 

in uneven surfaces and in some places MUSAFIR V1 gets stuck. 

3.4.2 Odometry Error 

Due to motors backlash, there were unavoidable accumulated errors in the odometry readings 

present after some time. 

3.4.3 Power Circuitry 

While testing, it has been noticed that MUSAFIR V1 A had rudimentary power circuit due to 

which one Raspberry Pi got burnt. Therefore, in MUSAFIR V1 B, power circuitry has been 

optimized to avoid any surges during the stall mode. 

3.4.4  nRF Modules 

In MUSAFIR V1 A, nRF Modules has been used for communication link layer. While nRF is a 

choice in the first iteration, it has later been realized that the connection issues were present so in 

MUSAFIR V1 B, nRF has been replaced with on-board Wi-Fi present in Raspberry Pi, thus this 

issue has been resolved successfully. 

3.4.5 Acrylic Base 

As we know, the base of MUSAFIR V1 Platform was made by Acrylic plastic sheet and hence 

was only suitable for limited indoor testing purposes only as the base was not strong enough to 

withstand any possible collision with obstacles or other bots. 

3.4.6 Road Grip 

Due to lightweight structure and toothless tires, MUSAFIR V1 does not have the required road 

grip. 

3.4.7  Outdoor Capability 

As stated earlier, MUSAFIR V1 was workable only inside a lab environment with tiled surface. 

When exposed to daylight, the proximity sensors produced erroneous output. So the MUSAFIR 

V1 outdoor operating capability is limited. 

3.5 MUSAFIR v2 
MUSAFIR v2 Specifications 
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3.5.1 Addition of Cameras 

To obtain visual feedback from front of MUSAFIR V2, 2 Cameras are placed side by side to get 

increased field of view. These cameras are interfaced with ROS and can be viewed over the 

network. 

3.5.2 Addition of Back Panel 

On the back of MUSAFIR V2, one camera with tilting mechanism, LCD and push buttons for 

reset and power has been added. 

3.5.3 Sonar Sensor Panel 

Three Sonar sensors added mounted on the front panel of MUSAFIR V2 for optimum obstacle 

detection and avoidance. 

3.5.4 Tire & Wheel 

To provide additional grip and traction, acrylic wheel has been replaced with customized Teflon 

wheel with rubber grip tires on top. This enhancement solves the skid issue to much extent. 

3.5.5 Motors 

In MUSAFIR V2, the motors have been replaced from generic DC motors to a much powerful 

German made Faulbaher 3257L024CR. This gives extra torque and power required to move 

heavier structure of the next MUSAFIR. 

3.5.6 Size 

Length: 440 MM, Width: 390 MM, Height: 270 MM 

3.5.7 Weight 

MUSAFIR V2 Weighs approximately 11.4 KG. 

3.5.8 Power Circuitry  

In the improved circuitry for power management, low voltage detection has been introduced and 

hence there are no abrupt restarts during the operation.  

3.6  MUSAFIR v2 Issues 
3.6.1 Speed 

The MUSAFIR V2 speed is low as of writing this report. i.e. 2.5 kmph. Progress is underway to 

increase the speed in 0 degree inclination. 

3.6.2 Weight 

Albeit the MUSAFIR V2 is heavier than its precedent, there is still a slight skidding issues 

observed during the movement. This can be reduced by introducing dead weight mounted on the 

robot chassis. 
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3.6.3  LIDAR  issues  

In outdoor daylight, LIDAR gave erroneous readings, this could be resolved by putting a shelter 

on top of LIDAR. 

3.6.4 Wiring Issues 

Initially there were some wiring issues but those have been resolved afterwards. 

3.6.5 Drive Mechanism 

In MUSAFIR V2, there is lack of differential drive, and a mid-point between two back wheels is 

the center of rotation. 

3.6.6 Ground Clearance 

Chassis of MUSAFIR V2 is held low and due to which there is not much ground clearance 

available for outdoor movement. 
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Chapter 4. Sensor fusion of UT, TIC and LIDAR for map 

generation 

Image processing results for stereo vision, UT sensor, LIDAR and FLIR will be discussed. The 

main objective is to help the IMR navigate in an unknown environment. 

4.1 Image processing using Stereo Vision 
4.1.1 Experimental Setup 

In this work, the actual stereo cameras were not used. We use two different cameras of same 

specifications separated by a baseline distance B as shown in fig. 1. 

       

Fig. 1. VGA Cameras separated by a baseline distance B 

The images are captured from the camera. They are then converted into grayscale for proper 

matching. Left and right images from left and right camera respectively are used to determine the 

disparity between the images. This disparity is determined by using the correlation and block 

matching mechanism as shown in fig. 2 
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Fig. 2. Process flow 

The images taken from left side and right side cameras are shifted horizontally because of the 

baseline distance (B) between the cameras. The disparity between these images can be calculated 

using this horizontal shift. The next step is to perform the basic block matching. For every pixel 

in the right image, we extract the 7-by-7-pixel block around it and search along the same row in 

the left image for the block that best matches it. The basic block matching does well, as the 

correct shape of the stereo scene is recovered. However, there are noisy patches and bad depth 

estimates everywhere, especially on the ceiling. These are caused when no strong image features 

appear inside of the 7-by-7-pixel windows being compared. Then the matching process is subject 

to noise since each pixel chooses its disparity independently of all the other pixels. A noisy 

disparity image can be improved by introducing a smoothness constraint using dynamic 

programming.  

    

The depth (Z) from the image pair can be estimated using (1) 

21 xx

fB
Z


              (1) 

Where f is the focal length of the lens used, B is the baseline distance between the two cameras, 

(x1+x2) is the disparity as shown in fig. 4. 

 

Figure 4 Triangulation 

The left and right images are compared using the Sum of Square Difference (SSD) between each 

pixel of the window as in (2). 

2
)(  rightleft IISSD                          (2) 

Where Ileft and Iright are the left and right images respectively 
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4.1.2 Results 

 

The test image taken in the lab is shown in fig. 9 and there corresponding depth image is shown 

in fig. 10. The pictures taken at lab showed promising results of disparity map. The white color 

shows object is nearer however black color maps to farther objects.  

 

Fig. 9 Test image taken in the lab 

 

Fig. 10 Depth image of the test image of figure 9 

4.1.3 Live Video Capturing 

 

After successful image processing on the images which we captured from both VGA cameras 

serially, we then captured live video from both the VGA cameras separately so that we can 

reduce the processing time of the stereo depth perception. 

The Python code for live video capturing from the VGA camera is attached in Annexure-A. 
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4.1.4 Two VGA Cameras on single Pi board 

 

Two VGA cameras were then run on a single raspberry pi and the frames from both these 

cameras were then captured serially. The delay between the frames captured from both the 

cameras was 3mSec. 

The Python code for running two VGA cameras on single raspberry pi board and capturing 

frames from those VGA cameras is attached in Annexure-B. 

4.1.5 Real time Stereo Depth Perception 

 

Instead of saving those captured frames into the memory of raspberry pi, we used those frames 

directly into depth perception code. So that we can increase the processing speed and can obtain 

the maximum frames possible in least possible time. 

The Python code for Stereo Depth perception is attached in Annexure-C. 

4.1.6 Results of Real Time Stereo Vision 

The results of stereo depth perception are as under, 

 

Fig 11(a): Real time Stereo Results 

 

Fig 11(b): Real time Stereo Results 
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4.1.7 Data Transmission 

The disparity results which we got from VGA cameras were then transferred to the base station 

over the WiFi in the real time. These results were then saved at base station with real time stamp. 

These images were then used to populate the map grid in real time. 

4.2 Stereo Results at actual fire site 
The results obtained at real outdoor environment are shown below: 

Fig: Stereo results in Outdoor environment 

The results in the outdoor environment were not accurate as compared to the lab environment. 

The main reason for this inaccuracy is that the computer vision techniques are not generic. These 

techniques/codes need to be tuned according to the environment. They only work in suitable 

environment. The inaccuracy occurs due to stereo correspondence. An image is comprised of 

hundreds of thousands of pixels. For a given pixel in the reference image, once its corresponding 

point is located in the target image, the disparity for that pixel is derived. A complete stereo 

correspondence algorithm will compute disparity for each pixel that appeared on both images. 

Moreover, a dense disparity map due to shadow effect usually contains background noise that 

makes it complicated for obstacle-specific depth calculation in smoky environment.   

4.2.1 Map Genration based on MaxSonar sensor 

MaxSonar sensor mounted on robot face was then rotated over an angle of 180˚ from 0˚ to 180˚ 

with step size of 10˚ to generate initial maps of the environment. 

The actual image of the environment is as shown 
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Fig 4.8: MaxSonar Testing Environment 

The Map which we generated based on the readings from MaxSonar sensor at its initial position 

was as 

 

Fig 4.9: Initial Map based on UT sensor 

The robot was then moved 6 inch further and a new set of readings were taken from 0˚ to 180˚ 

with step size of 10˚. The Map which we got this time was as shown under 
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Fig 4.10: Map at Position 1 

The same procedure was repeated at four unique positions of the robot and the results which we 

got are as shown 

 

Fig 4.11: Map at Position 2 
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Fig 4.12: Map at Position 3 

 

Fig 4.13: Map at Position 4 

4.2.2 Three MaxSonar Sensors on single raspberry pi 

After proper calibration of the data of single MaxSonar sensoron raspberry, we then interfaced 

three MaxSonar sensors from maxbotix on a single raspberry pi and obtained there data 

simultaneously in real-time.  

The wiring diagram of three MaxSonar sensors with raspberry pi 3 is as attached in fig 4.14 
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Fig 4.14: three MaxSonar sensors interface with raspberry pi 

The python scripts which we used for running three ultrasonic sensors on single pi board is 

attached in Annexure-F. 

4.3 Flir Thermal Imaging Camera 
The thermal imaging camera has the sensitivity of <50mk, which means it can detect the slightest 

change in outside temperature. This thermal imaging camera is integrated on the raspberry pi, 

which is mounted on the IMR. This will detect images of various scenarios in front of the 

camera. The images will be processed to take out the norm, taking two images at a time and 

comparing them. The one with the highest norm will enable the robot to move towards the hotter 

region from its current position. High norm mean that the image contains higher temperature 

region. This thermal imaging camera will thus tell the robot where the highest temperature 

region is and robot will move towards that. A test image of thermal imaging camera is shown 

below: 
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4.3.1 Progress with the sensor 

Our progress with this sensor is that we have modified the available codes of thermal imaging 

camera to work with our conditions. Now the sensor can take images as per the user desire or 

pre-defined delay in the code. Currently, we have used the delay of two seconds in our code of 

thermal imaging camera. So that our camera takes imaging after every two seconds in its 

directory where the images are exported to take out the norm. We have successfully written the 

code in python for taking out the norm from the images captured by Flir thermal imaging 

camera. The code is attached in Annexure-E. 

Based on these norm values and the distance values which we got from MaxSonar sensor, a 3D 

map of the environment was generated which tells the temperature of different regions in the 

environment around the robot. 

4.4 Sensors Fusion for implementation of Control algorithms: 
Feature Based Fusion Algorithm has been design to fuse UT and TIC data.  It requires the 

extraction of salient features which are depending on their environment such as pixel intensities, 

and edges. These features from input images are fused to form a new image. The obtained 

information from fused image is then combined applying decision rules to reinforce common 

interpretation. 

 

4.5 Development of 3D environment for Mobile Robots using UT and TIC: 
For the development of 3D environment for the implementation of control algorithms for IMR, 

we fused the data from all our sensors in such a way that we took thermal gradient of thermal 

images in real time. So that it can be easier for robot for making decisions for it next movement. 

The initial which we made by diffusing the data from Flir thermal imaging camera and 

MaxSonar sensor is shown in the figure below. 
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The temperature in different regions is represented by different color, where dark red color 

represent the highest temperature or most likely fire region while other colors represent the 

regions with relatively lesser values 
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Chapter 5. Problems and challenges with the design of 

MUSAFIR  

5.1 Introduction 
This chapter contains the modeling, control strategies and simulation results of the following 

four modules of a mobile robot. 

5.2 Redesigning the MUSAFIR 
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Chapter 6. Sensor Fusion Techniques for determining the 

exact geo-location 

5.1 INTRODUCTION: 

The term, “Robot localization” refers to the methods and techniques that are employed to 

determine the exact position of the robot. In order to navigate autonomously and to perform 

useful tasks, a robot needs to know its position and orientation. Robot localization is therefore, a 

key problem in providing autonomous capabilities to a mobile robot. 

5.2 ROBOT LOCALIZATION USING VARIOUS SENSORS: 

Various on-board sensors can be used to determine the exact position of mobile robot, such as 

IMU – Inertial Measurement Units, which are composed of GYROSCOPES and 

ACCELEROMETERS. Similarly, an odometer can also be used to determine the robot’s position 

information. Since, the position is calculated by integrating values from these sensors, the robot 

localization errors grow with time. Therefore, these sensors cannot provide accurate position 

estimation of the robot in the long run due to accumulated errors by integration. 

Another method for robot localization uses satellite based signals, e.g. GPS-Global Positioning 

System. The GPS provides accurate position information of robot but it has response slower than 

the sensors mentioned above. Also situations may arise when the GPS signals may not be 

available for some time. For e.g., when the robot is using GPS for localization and moves in 

enclosed spaces such as buildings etc. 

The issues discussed above for various sensors provide motivation towards a technique that 

combines the features of various sensors eliminating the noise factor at the same time. Such a 

technique is termed as “Sensor Fusion”. 

5.3 SENSOR FUSION: 

Sensor Fusion is the combining of sensory data or data derived from sensory data such that the 

resulting information is in some sense better than would be possible when these sources were 

used individually. 

A sensor fusion technique combines the data coming from various sensors so as to produce 

acceptable values of desired variables. A Kalman Filter is a well-known sensor fusion tool that 

is used for this purpose. Other methods use complementary filters and artificial neural 

networks as well. In the next section, different techniques for determination of exact geo-

location are discussed.  
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5.4 SENSOR FUSION TECHNIQUES FOR ROBOT LOCALIZATION: 

This section describes different sensor fusion techniques that combine data from various sensors 

to produce exact position information of a mobile robot. These techniques include the following: 

(1) Sensor Fusion of INS and GPS using Kalman Filter 

(2) Sensor Fusion of INS, GPS and Odometer using Kalman Filter and Complimentary  

      Filter 

 

(3) Sensor Fusion of INS, GPS and Odometer using Kalman Filter, Complimentary Filter       

      and Artificial Neutral Networks-ANN 

 

5.4.1. SENSOR FUSION OF INS AND GPS USING KALMAN FILTER: 

 

In this scheme of robot localization, only GPS (Global Positioning System) and INS (Inertial 

Navigation System) is used for determining the position of robot. The data from both the sensors 

is fused together using “Kalman Filter” as a sensor fusion technique to produce the desired 

position of robot. 

 

 
 

Fig5.1 Sensor Fusion of GPS/INS Only 

 

Inertial navigation system is composed of two sensors: accelerometers and gyroscopes and 

depending upon the application, these sensors could be dual-axis or tri-axis. Double integration 

of accelerometer data produces position information. However, the position obtained from 

accelerometers does not have long-term accuracy, therefore, the position data from INS is 

combined with GPS using KF. 
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5.4.1.1-ADVANTAGES OF THE SCHEME: 

 

Due to Kalman filter, the external disturbances and noise are considerably removed and an 

acceptable result is obtained. 

 

5.4.1.2-DRAWBACKS OF THE SCHEME: 

 

The two major draw-backs of the scheme that must be highlighted here are: 

 

1.  The scheme fails to work when there is no GPS signal as well as during GPS outages. When   

there is no GPS signal, the GPS/INS integration scheme becomes equivalent to INS only.i.e, at 

that time when there’s no GPS signal, we are left with INS based position data only which 

contains accumulated errors due to integration. 

 

2.  The scheme cannot be used for indoor positioning applications as GPS works in outdoor  

      environments only. 

 

Therefore, due to the limitations of above scheme not suitable for indoor environments such as 

inside buildings etc. A system capable of working indoors and outdoors is developed. This 

scheme is discussed in the next section. 

 

5.4.2. SENSOR FUSION OF INS, GPS AND ODOMETER USING KALMAN FILTER 

AND  

          COMPLEMENTARY FILTER: 

 

The motivation behind the development of such a scheme that is capable of working in indoor as 

well as outdoor environment is that the scheme presented in section 5.2.1 fails to estimate 

position in the absence of GPS. 

 

In this scheme, data from three sensors namely, INS, GPS and Odometer are combined to 

address the problem of position estimation of a mobile robot.GPS provides position information 

in outdoors where odometery is employed here to give position information in indoor 

environment. The data coming from the three sensors is combined in two steps: 

 

1. Sensor Fusion of Odometer and INS Using Kalman Filter 

2. Sensor Fusion of Kalman Filter Position Output and GPS Using Complementary Filter 
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The block diagram summarizing this scheme is shown in Fig. 5.2 

 

 

 
 

Fig5.2 Sensor Fusion of GPS/INS and odometer 

 

In the above diagram, it is shown that the weighting parameter ‘α’ is used to fuse the data from 

Kalman Filter and odometer in order to obtain the exact position result, i.e: 

 

Final Position = (1-α) GPS + α (Kalman Filter Position Output)   ---- eqn.(1) 

 

The filter of the form:   z = a * x + (1 - a) * y is called a “complimentary filter”. 

 
From above equation , eqn.(1),for final output, it can be seen that the system still works when 

there are no GPS signals , that is , in indoor environment as well as when there are GPS signals 

present ,that is, in outdoor environments. The only parameter that needs to be adjusted is 

parameter, ‘α’. 

 

5.4.2.1 ADJUSTING WEIGHTING/FUSION PARAMETER, α: 
 

1. The value of weighting parameter ‘α’ is adjusted in accordance with the availability of GPS 
signals. If GPS signals are available, then α is assigned the following values: 

� ≤ � ≤0.1 

2. If the values of GPS signals are not available, then the weighting parameter ‘α’ is assigned the 

values in the range: 

�. � ≤ � ≤1 

Range of ‘α’: 

The range of ‘α’ is between ‘0’ and ‘1’. i.e, 
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� ≤ � ≤1 

5.4.2.2: ADVANTAGES OF THE SCHEME: 

 

1. The scheme is simple to implement as the third sensor, odometer is fused using 

complementary  

    filter. 

 

2.  The scheme provides a solution for position estimation in indoor environments. 

 

5.4.2.3: DISADVANTAGES OF THE SCHEME: 

 

The disadvantage of this scheme is   that while odometer was easy to implement, it suffers from 

common dead reckoning error due to wheel slippage. This will cause error in calculation of 

position. 

 

The scheme presented in the next section presents   a modification of the above scheme, making 

use of artificial neural networks along with odometery data to provide localization solution in 

indoor environments, i.e, during the unavailability of GPS signals. 

 

5.4.3. SENSOR FUSION OF INS, GPS AND ODOMETER USING KALMAN FILTER ,   

          COMPLIMENTARY FILTER AND ARTIFICIAL NEUTRAL NETWORKS-ANN: 
 

We all learn that the cheapest, simplest and most useful solution for navigation and localization 
is the GPS system. But when you use a GPS sensor inside a house or building, a wide variety of 
barriers and interference make it difficult for GPS devices to work particularly well indoors. 

Given this, we have to forget the GPS navigation system for indoor use and try other methods. 

A solution for robot localization for indoor environment was discussed is section 5.4.2.However, 
the wheel slippage problem in odometer arise as an important issue in the accuracy of position 
estimation of robot. 

In this section, a scheme employing the artificial neural networks in addition to Kalman and 

complimentary filters is presented to overcome the problems mentioned in above paragraphs .We 

show that this strategy proves useful when the robot is using GPS to localize itself as well as 

when GPS becomes unavailable for some time. 

5.4.3.1. DETAILS OF THE SCHEME: 

The scheme is represented in block diagrams in Fig3 and Fig4.The details of the scheme are as 

follows: 

(a) WHEN THE GPS IS AVAILABLE: 
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As shown in Fig3, when GPS data is available, a multi-layered perceptron neural network is 

trained. First the position data from INS and GPS is fused together using Kalman Filter (KF) 

sensor fusion algorithm. This removes any uncertainty or noise in the GPS data. The KF works 

only when the GPS signal is present. For e.g., if the GPS sampling frequency is 2Hz, the KF 

provides position estimation after every 0.5 seconds. Meanwhile the neural network is also 

trained with the dataset presented to it after every 05 seconds. Multi-layered perceptron neural 

networks, (MLP-NN) are employed here for training the data-set. Multi Layer perceptron (MLP) 

is a feed-forward neural network with one or more layers between input and output layer. Feed-

forward means that data flows in one direction from input to output layer (forward).The block 

diagram showing feed-forward MLP-NN is shown in Fig5.The implementation details of 

Kalman Filter and MLP-NN are discussed in section 5.4.3.2. 

 FINAL OUTPUT: 

The final output during the MLP-NN training phase or in other words, when the GPS signal is 

available, is obtained by fusing the KF output with odometer based position data using 

complimentary filter as: 

Final Output =  (KF Position) + (1- ) (Odometer Position) ---- eqn.(2) 

Where ‘α’ is the fusion parameter. The range of ‘α’ is between ‘0’ and ‘1’. 
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Fig3. MLP-NN Training when GPS is available 

 

(b) WHEN THE GPS IS UNAVAILABLE: 

The block diagram of the system when GPS signals are not available is shown in Fig4.When the 

GPS signals are not available, the trained MLP-NN is tested, the data from INS is presented as 

input vector to the trained MLP which predicts the change in position ‘∆p’, and the current 

position of robot ‘pc’ is found using the change in position ‘∆p’ predicted by MLP-NN and last 

saved GPS position ‘po’ as: 

 c op p p     
FINAL OUTPUT: 

The final output of the system when the GPS signal is unavailable is obtained by the fusion of 

current position estimate calculated using MLP-NN output and odometer, using complimentary 

filter as: 

Final Output =  (MLP-NN Position) + (1- ) (Odometer Position) ---- eqn.(3) 

Where ‘α’ is the fusion parameter. The range of ‘α’ is between ‘0’ and ‘1’. 
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 Fig4. MLP-NN Testing when GPS is unavailable 

 

 

 

Fig5. MLP-NN Architecture 

5.4.3.2. IMPLEMENTATION: 
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In this section, the implementation   of Kalman filter algorithm followed by the details of 

Multilayer perceptron architecture and MLP-NN training data set are presented. 

(a) KALMAN FILTER: 

As described in section 5.4.3.1, the INS and GPS data is combined together using sensor fusion 
scheme called ‘Kalman Filter’. The main steps of Kalman filter are described as follows: 
 
STEPS OF KALMAN FILTER ALGORITHM: 
 

Kalman Filter is a recursive algorithm. The main steps of KF algorithm are highlighted here: 
 
1. Initialize the values of states and error covariance matrices    
                                                ˆ,xo Po     ---- eqn.(4) 

2. Predict the state and error covariance. 

                                                1
ˆ ˆ

k kx Ax Bu    ---- eqn.(5) 

                                                1
T

k kP AP A Q
  ---- eqn.(6) 

 Where, A is the state transition matrix and B is the control input matrix which applies the effect 
of the   input 'u' to the state vector. Q is the process noise covariance matrix and P is the error 
covariance matrix. 
      

 3. Find the Kalman Gain  

                                         1( )T T
K K KK P H HP H R      ---- eqn.(7) 

 

Where,   H is the observation matrix and R is the measurement noise covariance matrix 

4. Calculate the state estimate: 

                                          ˆ ˆ ˆ( )k k kx x K z Hx      ---- eqn.(8) 

   5. Calculate the error covariance: 
                                            k k kP P KHP   ---- eqn.(9) 

 

The algorithm then iterates through steps 2 to 5 predicting the states ˆ
kx  in each  iteration. 

KALMAN FILTER FORMULATION FOR THE FUSION GPS AND INS:  

As shown in Fig3, the position data from GPS and INS is combined using Kalman Filter. In 
order to combine INS-GPS data, an 8 state Kalman filter is implemented: 
 
STATE VECTOR: 

 
The state vector is: 
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x = [ Na  Ea  Da  NV  EV DV     ]   ---- eqn.(10) 

 
Where, 

Na  is the robot acceleration along north 

Ea  is the robot acceleration along east 

Da  is the robot acceleration in down-ward direction 

NV  is the robot velocity along north 

EV  is the robot velocity along east 

DV  is the robot velocity in down-ward direction 

  is the geodetic latitude 
 is the geodetic  longitude 

 
STATE TRANSITION MATRIX: 
 
The state transition matrix has been assigned the following values: 
 

A =

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

1
0 0 0 0 1 0

1
0 0 0 0 0 1

c o s( ( )) c o s ( ( ))

M M

N N

T

T

T

T

R R

T

R k R k 

 
 
 
 
 
 

 
 

 
 
 
 
 
 
  

---- eqn.(11) 

 

Where, T  is the sampling time, MR  and NR  are  radius of curvature of earth in meridian and 

prime vertical respectively, and are given by: 

2

2 2 3/2

(1 )

(1 sin )
M

a e
R

e 





---- eqn.(12) 

2 2 1/2(1 sin )
N

a
R

e 



---- eqn.(13) 

 

Where, ‘ a ’ is the equatorial radius of earth, given by: 

a  = 6, 378, 137, 0 m 

and ‘e’ is the eccentricity having the value: 
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0.08181919e   

INPUT MATRIX: 

Since, there is no input, the input matrix ‘B’ is zero. 

8 1[0 ]xB   ---- eqn.(14) 

 

MEASUREMENT MATRIX: 

The measurement matrix ‘z’ is composed of sensor measurements from accelerometers and GPS 

position co-ordinates. 

z = [ Na  Ea  Da      ] ---- eqn.(15) 

OBSERVATION MATRIX: 

The observation matrix ‘H’ is: 

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

H

 
 
 
 
 
 
  

---- eqn.(16) 

PROCESS NOISE COVARIANCE MATRIX: 

The process noise covariance matrix is assigned the following values. 

 8 80.1 XQ   ---- eqn.(17) 

MEASUREMENT NOISE COVARIANCE MATRIX: 

 
The measurement noise covariance matrix R  is: 

2

2

2

2

2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

aN

aE

aDR















 
 
 
 
 
 
 
 

---- eqn.(18) 

 

INITIAL VALUES OF ERROR NOISE COVARIANCE AND STATE VECTOR: 

 The error covariance matrix P is initialized to: 
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0P Q  ---- eqn.(19) 

The system states are initialized to all zeros assuming no prior knowledge: 

0 1 8[0 ]XX   ---- eqn.(20) 
 

IMPLEMENTATION OF MULTI-LAYER PERCEPTRON NEURAL NETWORK: 

 

As shown in Fig3, during the availability of GPS signals the Multilayer Perceptron neural 

network is trained. When the GPS signal loses, the trained MLP network works instead of  GPS 

to predict the current position of the robot. This is depicted in Fig4.The architecture of Multi-

layer Perceptron network and details of training data-set are as follows: 

  
MLP-NN ARCHITECTURE: 

 

Two Multi-layer Perceptron neural networks are implemented here for predicting the change in 

position of robot (change in latitude and longitude). Both the MLP networks are implemented in 

the following architecture: 

 

MLP1 = 12 x 50 x 40 x 1 

MLP 2 = 12 x 50 x 40 x 1 

 

In both the MLP networks, there is one input layer, two hidden or processing layers having 50 

and 40 neurons respectively and one output neuron. 

 
TRAINING DATASET: 

 

The training data sets for MLP1 and MLP2 are as follows: 
TRAINING DATASET FOR MLP1: 

 

. Input and Targets for MLP 1: 

Inputs: [ Na Ea Da Na Ea Da Nv Ev Dv    ] 

Target(s): [  ]    (change in latitude) 
 

 

TRAINING DATASET FOR MLP2: 

 

b. Input and Targets for MLP 2: 

Inputs: [ Na Ea Da Na Ea Da Nv Ev Dv    ] 
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Target(s): [  ]   (change in longitude) 

 

Where, 

Na Ea Da  are accelerations in NED inertial frame 

Na Ea Da are cumulative accelerations in NED inertial frame 

Nv Ev Dv  Velocities in NED inertial frame 

   are Euler Angles 

All the variables in the input vector are obtained from INS – Inertial Navigation System only ,as 

shown in fig3 and fig4.The inertial navigation system comprises of accelerometers and 

gyroscopes. The accelerometers provide accelerations in three dimensions from which we 

calculate cumulative values of accelerations. The velocity is calculated by integrating the 

acceleration values. Since the acceleration values are in sensor frame initially, therefore, these 

values were transformed from sensor body frame to NED reference inertial frame. The 

gyroscope gives angular velocities, using these angular velocities, euler angles can be calculated 

using the quaternion using the following steps. 

1. First the initial values of four euler parameters, e0, e1 , e2 , e3 are calculated using the initial 

values of roll , pitch and yaw angles , ,i i i    as: 

cos( )cos( )cos( ) sin( )sin( )sin( )
2 2 2 2 2 2

i i i i i i
oie

     
   ---- eqn.(21) 

1
cos( )cos( )sin( ) sin( )sin( )cos( )

2 2 2 2 2 2i

i i i i i ie
     

  ---- eqn.(22) 

2 cos( )sin( )cos( ) sin( )cos( )sin( )
2 2 2 2 2 2

i i i i i i
ie

     
  ---- eqn.(23) 

3 cos( )sin( )sin( ) sin( )cos( )cos( )
2 2 2 2 2 2

i i i i i i
ie

     
  ---- eqn.(24) 

2. Using the above initial values of euler parameters, the time trajectory calculated as: 

0 1 2 3

1
( )

2
e e p e q e r    ---- eqn.(25) 

1 2 3

1
( )

2
oe e p e r e q   ---- eqn.(26) 

2 3 1

1
( )

2
oe e q e p e r   ---- eqn.(27) 
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3 1 2

1
( )

2
oe e r e q e p   ---- eqn.(28) 

3. Finally the Euler angles are calculated using the above calculated Euler parameters: 

1
1 3 2sin ( 2[ ])oe e e e    ---- eqn.(29) 

                   
2 2 2 2

1 1 2 3
2 3 12

1 3 2

[ ]
cos (2[ ])

(1 4( ) )

o
o

o

e e e e
sign e e e e

ee e e
    
 

 
 ---- eqn.(30) 

                          
2 2 2 2

1 1 2 3
1 2 32

1 3 2

[ ]
cos (2[ ])

(1 4( ) )

o
o

o

e e e e
sign e e e e

e e e e
    
 

 
 ---- eqn.(31) 

5.4.3.4. SIMULATION RESULTS: 

The simulation results for the above scheme are shown in Fig6to Fig9. 

 

Fig6. GPS Output and AI (MLP) + Odometer Output (For longitude) 

Explanation: 

When GPS is on, firstly, the MLP is trained using the Kalman Filter outputs as targets, the KF 
works only when the GPS is on .After training with KF position data, the MLP is tested to 
predict position (longitude) in the absence of GPS data points, as shown in the above figure. The 
graph plotted in green shows the MLP predicted position output fused with odometer based 
position output using the complementary filter. The GPS points in red are also shown on the 
figure. It can be observed that after training, the MLP is able to predict position in the time 
instants where the GPS based position data is not available. 
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                  Fig7.  GPS Output and AI (MLP) + Odometer Output 
                            ( For latitude) 

 

Explanation: 

When GPS is on, firstly, the MLP is trained using the Kalman Filter outputs as targets, the KF 
works only when the GPS is on .After training with some KF position data, the MLP is tested to 
predict position (latitude) in the absence of GPS data points, as shown in the above figure. The 
graph plotted in green shows the MLP predicted position output fused with odometer based 
position output using the complementary filter. The GPS points in red are also shown on the 
figure. It can be observed that after training, the MLP is able to predict position in the time 
instants where the GPS based position data is not present. 
  

 

 

 

Fig8. KF + Odometer and AI (MLP) + Odometer Output 
(For latitude) 

Explanation: 
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When GPS is on, firstly, the MLP is trained using the Kalman Filter outputs as targets, the KF 

works only when the GPS is on .After training with KF position data, the MLP is tested to 

predict position (latitude) in the absence of GPS data points, as shown in the above figure. The 

graph plotted in green shows the MLP predicted position output fused with odometer based 

position output using the complementary filter. The KF position fused with odometer based 

position are also shown on the figure in red. It can be observed that after training, the MLP is 

able to predict position in the time instants where the KF based position data is not available. 
 

 
Fig9. KF + Odometer and AI (MLP) + Odometer Output 

(For longitude) 
 

Explanation: 

When GPS is on, firstly, the MLP is trained using the Kalman Filter outputs as targets, the KF 

works only when the GPS is on .After training with some KF position data, the MLP is tested to 

predict position (longitude) in the absence of GPS data points, as shown in the above figure. The 

graph plotted in green shows the MLP predicted position output fused with odometer based 

position output using the complementary filter. The KF position fused with odometer based 

position are also shown on the figure in red. It can be observed that after training, the MLP is 

able to predict position in the time instants where the KF based position data is not available. 

 

5.4.3.5. CONCLUSION: 

In the above scheme, data fusion of three sensors is presented namely GPS, INS and odometer. 

The proposed scheme provides the position data both during the availability and unavailability of 

the GPS signals. Neural network based on multi-layer perceptron is employed to predict the GPS 

information during GPS signal loss. In order to make the scheme more reliable future work is 

directed towards developing a scheme for online updating the fusion weighting parameter ‘α’ 

.With the proposed scheme absolute robot position to a greater degree of accuracy can be 

obtained in indoor as well outdoor environments.  
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Chapter 7. Problems in design and development of the 

mechanical structure of IMR 

 

Two different types of design for the IMR have been explored. In the initial design treads were 

utilized in the mechanical structure. There were maneuverability issues with the initial design. In 

the second approach wheel based robots have been designed. Currently we are working on the 

improvement of both the designs. Mechanical drawings of both the models are included in this 

chapter. 
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7.1 Initial design of the IMR  
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7.2 Proposed modifications in the design of the IMR 
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