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Chapter 1. Introduction 

This report is the fifth deliverable for the National ICTR&D funded research project titled 

“Design and development of Intelligent Mobile Robots (IMRs) for disaster mitigation and 

firefighting”.  
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Chapter 2. Using ROS with the robot 

We have studied, learned and used ROS to interface sensors on the robot for use in the IMR Lab 
work. However to harness maximum advantage from ROS and utilize its features for sensor 
transformations we have been having some difficulty implementing the features. In order to 
move forward with problems and issues related to ROS we selected to study similar robots and 
how they work in the ROS environment to get a better understanding for our own work. 

2.1 Research on ROS Compatible Robots 

There is a comprehensive list of ROS compatible robots on ROS official website with relevant 
links and related information. This list is composed of many different categories of robots 
including aerial, grounded and marine robots etc. Grounded robots are further categories into 
fixed, two, three and four-wheeled robots. We found few ROS compatible robots which are 
much similar in functionality to the IMR robot with respect to sensors and actuators, i.e. 
ultrasonic sensors, LIDAR, inertial sensors, GPS and cameras. 
 

2.2 List of similar ROS compatible robots 

1. TurtleBot 2 
2. Mobile Research Platform (MRP2) 
3. PMB - 2 
4. Evarobot 

 

2.2.1 TurtleBot 2 
TurtleBot is the official ROS compatible robot. Designed 
and Developed by willow Garage, who also have a critical 
role in development of ROS. It is open source hardware 
platform and mobile base. When powered by ROS software, 
TurtleBot can handle vision, localization, communication 
and mobility. It can autonomously move while avoiding 
obstacles and reaching its goal positions. Turtlebot 2 uses 
Kobuki Base which is a ROS compatible base and work as 
it’s brain. 
Link: http://learn.turtlebot.com/2015/02/01/1/ 

 

2.2.1 Mobile Research Platform (MRP2) 

MRP2 is an easy to use mobile research robot developed by 
Milvus Robotics. The robot can easily do mapping with its 
already available navigation software and can position itself 
on the map with a few centimeters accuracy. MRP2, with its 
powerful hardware and software infrastructure, enables 
users to make developments quickly and comfortably. 
Link: http://milvusrobotics.com/en/products/mrp2 
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2.2.2 PMB - 2 
PMB-2 is an indoor mobile robot designed with minimum 
footprint and maximum payload in mind. Its primary 
sensors are a laser range finder and an IMU, but optional 
additions include ultrasound sensors and microphones. 
PMB-2 features built-in speakers so the robot can inform 
its surroundings via sound. This robot runs on ROS Hydro 
internally. 
Link: http://wiki.ros.org/Robots/PMB-2 

 

2.2.4 Evarobot 
The Evarobot is a mobile robot platform built by 
Inovasyon Muhendislik. Usually used for indoors 
localization and navigation due its sensors limitations. 
Evarobot uses Raspberry Pi as its main processing 
brain and has almost entire software toolchain 
available as open source. Further, Evarobot also 
provides a ready to use Raspberry Pi OS Image. 
Link: http://inovasyonmuhendislik.com/ and 
http://wiki.ros.org/Robots/Evarobot 

 
 
We selected Evarobot for further and detailed analysis and study as this robot is the most 
similar to our IMR Lab robots and on top of that provides the software repositories as well. The 
use of Raspberry Pi, usage of LIDAR and use of UltraSonic sensors is very similar to our use 
case. 

 

2.3 Evarobot Detailed analysis 

Evarobot has most more similarities to IMR than other studied robots. As it uses LIDAR, 
ultrasonic sensors, camera, bumper sensors, inertial sensors while also having a differential 
drive mechanism similar to the IMR robots. The other reason for choosing this robot for further 
in-depth study is its open-source software and code. Tutorials for gazebo simulations are also 
provided and will be helpful because we don’t have Evarobot hardware. 

2.3.1 Choice of OS 

Studying Evarobot, we came to know that Evarobot uses Raspbian as its operating system with 
ROS indigo installed. ROS Indigo is not latest version and there have been 2 newer versions but 
Indigo is an LTS version, meaning it has long term support fomr the community.  
 
We are using Ubuntu Mate and ROS Kinetic with Raspberry Pi at IMR Lab. Although, for the 
time being it works, but Ubuntu is a sluggish running on the Raspberry Pi, while Raspbian is 
optimized for running on the pi. Our code is becoming more and more complex and requires fast 
and real time response, which is not possible with a slow operating system. The sluggish system 
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also hinders and slows down the development process as well. On the other side, ROS does not 
officially support Raspbian but through source installation ROS can be installed. Furthermore, 
Evarobot also provides a Raspbian image file with ROS indigo installed which will be helpful as 
a starting point. 

2.3.2 Network configuration 

To communicate and operate Evarobot with PC it also requires a specific network configuration. 
It uses static IP network which is helpful as it means no time wasted in discovery of network and 
finding connected devices or guessing IP addresses. 
 
On the other hand, the whenever IMR is connected to network it is assigned different IP. This 
results in us having to hunt for its IP from connection information which is a time wasting 
procedure. At the moment, we are working with dynamic IP network which is not suitable and 
optimal solution for working with multiple robot network. 
 

2.3.3 Sensor Integration 

Every sensor used in Evarobot has its own ROS package and a Kernel driver associated with it. 
This results in the sensors always available for processing and being available as Kernel devices, 
any programming language and framework can be used to read sensors allowing for easy 
programming and debugging. 
 
Our method of interfacing hardware with Raspberry Pi and ROS is based on Python script files 
which are not handled as proper ROS nodes and hence some debugging and testing tools are not 
available to us. Our hardware is also connected to Pi via a separate Arduino and some sensors are 
directly connected but the Python is a bit slow in reading the hardware.  
 

2.3.4 Simulation with URDF 

The main reason for studying different ROS compatible robots is their open source simulation 
models and examples. Evarobot gives a comprehensive and multiple simulation examples for 
building map of unknown environment and navigation through it. By studying the Evarobot 
model, we came to know the importance of URDF file in simulating with a 3D robot model. In 
addition to simulation, one of the many benefits of ROS is Sensor TRANSFORMS, uptill now, 
we had not been able to utilize transforms for our sensors on IMR Robot, studying the Evarobot 
examples have cleared many issues and problems we were facing. We have now started work on 
creating a basic URDF file for our IMR robots, this will allow us to have the sensors values be 
transformed to proper coordinate frames according to robot body and the robot location. Another 
ROS tool is Robot State Publisher which is responsible for reading URDF files and transforming 
the sensor data accordingly. 
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2.4 Improvements to our ROS Methodology 

After in-depth analysis of Evarobot and other ROS compatible robots we found some flaws and 
improvements to be done in our ROS methodology like lacking of single launch file to start the 
operation of robot, robot sensor transforms, static IP network etc. 
 

2.4.1 Work done uptill now 

So far, we had successfully interfaced inertial sensors, ultrasonic sensors, camera and LIDAR 
with ROS separately, and published odometry results into ROS. All sensors are tested 
independently and produce satisfactory results. Independently testing of sensors does not 
require any robot transform and URDF file. For combined test of sensors require a robot state 
publisher and a URDF file which have robot description. Now, for future work it is very 
necessary that we start from robot state publisher and URDF file to combine those separately 
tested sensors. 

 

2.4.2 Kernel Drivers 

Most of the studied robots uses kernel drivers to interface with sensors which is more 
convenient method than separately invoking/calling every sensor within single script, and 
proper separate ROS packages will also be helpful. 

 

2.4.3 Robot State Publisher and Robot URDF 

As described above, for separate integration of sensors with ROS deos not require any robot 
transform to publish. But, as we are advancing into next phase of combined sensor integration 
we require a robot transform that tells us which component is attached at which position with 
respect to robot base. 

 

Figure 1 ROS visualization tool RVIZ 
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2.4.4 C/C++ Language 

In order to fully utilize Raspberry Pi and sensors hardware, we need to convert our code from 
Python to C, which will give us marked improvement in sensor performance and interfacing 
capability. Currently we are relying on Python code/libraries which are not very optimized 
nor are designed to work with multiple sensor scenario. 

 

2.4.5 Testing with ROS indigo 

Up till now, we are working with Ubuntu Mate and ROS Kinetic which is good enough for 
simple use. Unfortunately, we faced some problems as we are progressing in ROS like 
compilation errors, slow response due to sluggish operating system and many ROS packages 
are still only available for ROS Indigo. Due to this, we have decided to move from ROS 
Kinetic to ROS Indigo for compatibility and support reasons. 
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Chapter 3. Calibration of UT and Thermal Imaging 

Camera 

3.1 UT Detection Testing: 

We have tested the detection range of MaxSonar sensors. For this purpose, we have created an 

experimental site of 4x10 boxes in NDT lab as shown in figure. 

We tested the behavior of MaxSonar sensor (MB7380 LR) for:     

    1) Objects of Different Size 

    2) Objects at Different Distances 

    3) Objects of Different Heights 

    4) Sensor at Different Altitudes 

 

Objects or obstacles which we used for this test were; 

 PVC Pipe with diameter of 2.5 inch and height of 24 inch  

 Steel Pipe with diameter of 3.5 inch and height of 16.5 inch 

 PVC Pipe with diameter of 6.75 inch and height of 9.5 inch 

 13 inch wide wooden board and height of 9.4 inch 

 

Figure 2: Experiment site made in NDT center 

15cm 
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3.1.1 PVC Pipe with diameter of 2.5 inch 

First set of tests were performed using a PVC Pipe of 2.5 inch. The pipe was moved over the grid 

from left towards right and the response of MaxSonar sensor was observed. 

Figure 3:  PVC Pipe with center at distance of 6 inch from sensor 

Figure 4: PVC Pipe with center at distance of 18 inch from sensor 
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Figure 5: PVC Pipe placed at distance of 30 inch towards front and 6 inch towards left 

The overall range of testing of steel pipe of 2.5 inch diameter and of 24 inch height is shown in 

below figure 

 
Sensor 

Position 
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3.1.2 Steel Pipe with diameter of 3.5 inch 

Second obstacle used for testing was a steel pipe with diameter of 3.5 inches. This obstacle was 

also moved across the grid and the results were then noted. Some images representing this 

activity are attached under; 

 

Figure 6: Steel pipe place at front at distance of 12 inch from center 

 

Figure 7: Steel pipe place distance of front (24 inch) and right (6 inch) 
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Figure 8: Steel pipe place at distance of front (54 inch) and right (3 inch) 

The overall range of testing of detection for a steel pipe of 2.5 inch diameter and of 24 inch 

height is shown in below figure; 

 

Sensor 

Position 
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3.1.3 PVC Pipe with diameter of 6.75 inch 

Third obstacle which we used was a PVC pipe with diameter of 6.75 inch. Same testing 

procedure was used for this obstacle as well.  

A few images of this are also attached under; 

Figure 9: PVC Pipe of 6.75 inch placed at front (30 inch) and left (6 inch) 

 

Figure 10: PVC Pipe of 6.75 inch diameter place at distance of 60 inch towards front 

The overall range of testing of steel pipe of 2.5 inch diameter and of 24 inch height is shown in 

below figure 
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3.1.4 13 inch wide wooden board 

In last scenario, a 13 inch wide wooden board was used as an obstacle. This wooden was also 

placed at all possible location on the board and results were noted. Images depicting the conduct 

of this test are also attached under; 

 

Sensor 

Position 
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Figure 11: 13 inch wide wooden board placed at front (60 inch) and left (12 inch from 
center) 

 

Figure 12: 13 inch wide wooden board placed at front (30 inch) and right (9 inch from 
center) 

The overall range of testing of steel pipe of 2.5 inch diameter and of 24 inch height is shown in 

below figure 
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3.1.5 Sensor at different altitudes 

The height of sensor was then changed from the ground by the use of the chair and all the 

experiments were then repeated again. Multiple obstacles were also used to test the performance 

of MaxSonar sensor. Results of maxsonar sensor were satisfactory with multiple obstacle in its 

range. 

 

Sensor 

Position 
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Figure 13: Sensor placed at different hieght 

 

Figure 14: 2 obstacles in range of Sonar sensor 
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Figure 15: 4 obstacles in range of Sonar sensor 
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3.1.6 Results: 

 

Figure 16: Max detection range from different obstacles 
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These maximum detection points from different obstacles were then joint to depict the actual 

detection range. As shown in the figure below, where; 

 Pink lines represent the detection range of 13 inch wide wooden board 

 Purple lines represent the detection range of 6.75 inch diameter PVC Pipe 

 Red lines represent the detection range of 3.5 inch diameter steel pipe 

 Yellow lines represent the detection range of 2.5 inch diameter PVC pipe 

 Green lines represent the actual detection range of MaxSonar sensor based on all the 
testing performed. 

 

 

 

Figure 17: detection range of different Obstacles in front of MaxSonar sensor 
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3.1.7 Conclusion: 

Based on the testing performed and the results which we got when we placed different obstacles 

in front of the sensor. Following things can be concluded; 

o It can detect the objects 1mm a part. 

o It can measure a minimum distance of 30cm. Therefore the objects near to 30cm are 

typically reported as 30cm. 

o The HRXL-MaxSonar-WR sensor line compensates for target size differences. This 

means that, provided an object is large enough to be detected, the sensor will report the 

same distance, regardless of target size. 

o Smaller targets can have additional detection noise that may limit this feature. In 

addition, targets with small or rounded surfaces may have an apparent distance that is 

slightly farther, where the distance reported may be a composite of the sensed object(s). 
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Chapter 4. Fusion of UT and LIDAR in ROS 

4.1 UT Data in ROS 

4.1.1 UT integration with raspberry pi 

After proper calibration of the data of single MaxSonar sensor on raspberry pi, we then 

interfaced six MaxSonar sensors from maxbotix on a single raspberry pi and obtained there data 

simultaneously in real-time. 

The orientation of these sensors on the robot head is attached under; 

 

Sensors Orientation on robot 

 

4.1.2 UT data Publish to ROS network 

The data of all these ultrasonic sensors (six sensors on single robot) was then published in the 

ROS network. For publishing the MaxSonar data in ROS network, we used three different 

machines, two of them were Linux operating machines with Robotics Operating System installed 

on them (One PC and one raspberry pi) while the remaining system was a normal windows 

operating system with MATLAB 16.0 installed on them. We integrated all six ultrasonic sensors 

with one of the Linux operating machine (raspberry pi with ROS kinetic installed on it). 
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We then went into the catkin workspace which we created in raspberry pi for building and 

running the already build packages. For this, we used the following command; 

 $cd ~/catkin_ws 

A bash file was then created to enter to ROS network using the under mentioned command; 

 Source devel/setup.bash 

To enter into the bash file containing folder; 

 Roscd 

The data all ultrasonic sensors was then published in the ROS network using under mentioned 

command; 

 Rosrun ultrasonic_ros 

 

4.1.3 UT data subscribed in ROS network 

To subscribe to the data of ultrasonic sensors which we published from other machine (import 

the data from robot) in real time, the remaining Linux operating machine was used which was 

already inside the ROS network. 

For this purpose, at first we went through all the topics that are being published in the ROS 

network. Following command is used for this purpose; 

 Rostopic list 

From the list of all these topics, user can access any of the data being published in the ROS 

network in real time. To import the data from raspberry pi (robot) to base station, we used 

following command; 

 Rostopic echo /topic_name 

Where, the topic name will be replace the name of any topic which user want to access from the 

list of topics being published. As in this case, it is; 

 Rostopic echo ultrasonic_ros 

4.1.4 UT data accessed in MATLAB 

This published data was then brought into MATLAB in real time by running a Node Host at 

MATLAB using MATLAB’s Robotics Toolbox. 
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The commands which we used for this purpose were the same as mentioned above in the 

subscriber topic. Attached following the screenshot of the data which we got in MATLAB in real 

time. 

 

Real time Ultrasonic data in MATLAB’s command window 

4.2 LiDAR data in ROS 

4.2.1 LiDAR location on Robot 

LiDAR was mounted at the top of the front location of robot and was connected to raspberry pi 

through USB port. 
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LiDAR and ultrasonic sensors location on robot 

4.2.2 LiDAR data published to ROS network 

The data of 2D point cloud which we got from rplidar was then published into the ROS network. 

For this purpose we used three different machines, two of them with Robotics Operating System 

installed on them while the remaining system was a normal windows operating system with 

MATLAB 16.0 installed on them. We integrated rplidar with one of the Linux operating machine 

(raspberry pi with ROS kinetic installed on it). 

We then went into the catkin workspace which we created in raspberry pi for building and 

running the already build packages. For this, the following command was used; 

 $cd ~/catkin_ws 

A bash file was then created to enter to ROS network using the under mentioned command; 

 Source devel/setup.bash 

To enter into the bash file containing folder; 

 Roscd 

Rplidar node was then launched to run in ROS network; 

 Roslaunch rplidar_ros rplidar.launch 

The data rplidar was then published in the ROS network using under mentioned command; 

 Rosrun rplidar_ros rplidarNodeClient 
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4.2.3 LiDAR data subscribed from ROS network 

To subscribe this data (import the data from robot) in real time, the remaining Linux operating 

machine was used which was already inside the ROS network. 

For this purpose, at first we went through all the topics that are being published in the ROS 

network. Following command is used for this purpose; 

 Rostopic list 

From the list of all the user can access any of the data being published in the ROS network in 

real time. For this purpose, following command is generally used; 

 Rostopic echo /topic_name 

Where, the topic name will be replace the name of any topic which user want to access from the 

list of topics being published. 

4.2.4 LiDAR data imported to MATLAB command window 

This published data was then brought into MATLAB in real time by running a Node Host at 

MATLAB using MATLAB’s Robotics Toolbox. 

The commands which we used for this purpose were the same as mentioned above. Attached 

following the screenshot of the data which we got in MATLAB in real time. 

 

Real time LiDAR inside the command window of MATLAB 
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4.3 Data Fusion in MATLAB for Map plotting 

The data which we have in MATLAB in real time will be fused to generate a better and more 

accurate graph can then be achieved. As the increase in temperature decreases the accuracy of 

LiDAR decreases while on the other hand, ultrasonic sensors are relatively slower as compared 

to LiDAR. Therefore system should generate more accurate graphs in lesser possible time. 

We have got the data of MaxSonar ultrasonic sensors and LiDAR data in MATLAB in real time. 

We are now working on making appropriate algorithms for the fusion of both sensor’s data. 
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Chapter 5. PCB Designs   

This chapter discusses the work done on the electronics for robots made at IMR lab and the 
electronics work that is to be done to get the final robots up and running. In order to build up to 
the final robots, there were several iterations and designs that were made, upgraded, discarded 
and re-made to satisfy the necessary requirements of the robots and the requirements of the 
project. Most importantly, the IMR robots are not a one step process but that these have evolved 
from simple lab based robots MUSAFIR bots to a bigger and more robust sensor platform 
MUSAFIR v2 and then finally the IMR Robots which are currently being made are full size and 
use multiple 90W motors. 

5.1 MUSAFIR, MUSAFIR v2 

The first robots to come out of the IMR Lab was the MUSAFIR project, this was a great 
achievement for the Lab as majority of the circuitry, design and code was written from scratch 
and a single MUSAFIR Robot, which costed about 10 times less than its similar counterparts in 
other parts of the world, allowed us to gauge and test several algorithms and gave us insight into 
how multiple robots can be controlled in a dynamic and unstructured environment. 
 

 
Figure 18 MUSAFIR Robot version 1.0 

One of the downsides of MUSAFIR was that it could not move on uneven terrain and not even 
on road or cemented flooring, this severely limited our testing capabilities and we went back to 
the drawing board to design a better variant which would be able to move on cement and road 
terrain. The MUSAFIR v2 was born. MUSAFIR v2 was also the robot which utilized ROS and 



31 
 

had a single board computer Raspberry Pi 3 on board for most of the processing. Using the 
MUSAFIR v2 we were able to generate maps of unknown environments using the LIDAR 
Sensor and the capabilities of the Raspberry Pi computer and the ROS framework. 
 

 
Figure 19 MUSAFIR version 2.0 

5.2  MUSAFIR Robot Design 

The MUSAFIR robots used completely designed and fabricated in-house with observing similar 
robots. This section discusses the design decisions that were taken and how those affected the 
outcomes, the issues we faced and what solutions were proposed and taken to counter the 
problems faced. 
 

5.3 MUSAFIR v1 

MUSAFIR v1 was built with plastic acrylic sheets, LASER Cut to our required size and shape. 
The motors used had built-in encoders which allowed us to do odometery whereas onboard IMU 
provided acceleration and velocity readings. MUSAFIR v1 had distributed control, with two 
micro-controller boards on the robot, one for odometery and velocity control which implemented 
low level PID control for both motors and the other controller which communicates with the 
main computer using a 2.4GHz transceiver and also uses an SD Card for data logging. 
 
The Electronics onboard MUSAFIR v1 is listed below: 

 Lipo Battery, 4S, 5200mAh 
 Buck Converters – 5V for Controllers and 12V for Motor Drivers 
 Motor H-Bridge v1 
 12V DC Geared Motor with Encoder (1500CPR) 
 Motor Controller v1 – Arduino Nano interface board 
 Arduino Mega – for communication 
 MPU-9150 – 9-Axis IMU  
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 nRF24L01+ 2.4GHz Transceiver 
 SD Card Module 

 
MUSAFIR v1 was our first implementation and we managed to create 2 identical MUSAFIR v1 
robots which were controlled by a computer using a USB to Serial 2.4GHz Transceiver Bridge 
that we had made, using Arduino and nRF module. 
 

5.3.1 MUSAFIR v1 Issues 

While working with MUSAFIR v1 we realized several things that needed to either be replaced or 
improved upon, these are listed below. 

 Having 2 micro controllers on board and managing code of both was a very tedious task. 
Solution: Have 1 micro-controller on the robot to do all low level tasks. 

 nRF24L01+ transceivers worked most of the time, but when they didn’t much time was 
wasted. Also there was no proper mechanism of confirming ACTIVE LINK, error 
checking and acknowledgements. Implementing those would have taken much time. 
Solution: Replace nRF with a better Wireless system. 

 Arduino MEGA although having enough memory for code storage and RAM, but it still 
is ultimately a single micro-controller and giving it all the higher level tasks of 
communication, data storage, IMU filtering was a huge task on its own and although we 
could do all these individually, doing all these things simultaneously was not possible for 
us to achieve in the given time and with required accuracy and speed. 
Solution: Use a better processor, managed system, like a single board computer, 
Raspberry Pi for higher level processing, communication and logging. 

 

5.4 MUSAFIR v1.5 

MUSAFIR v1.5 used the same bodies/chassis of the MUSAFIR v1, basically MUSAFIR v1s 
were repurposed to make v1.5. This variant resolved the issued faced with v1 and allowed us to 
start and implement ROS on the robots. 
 
The main difference in the onboard electronics of MUSAFIR v1.5 was the replacement of 
Arduino MEGA with Raspberry Pi 3, as Raspberry Pi 3 has built-in WiFi, we also had no longer 
need of the 2.4GHz Transceiver modules. 
 

5.4.1 MUSAFIR v1.5 Issues 

As with any research based effort, iterations provide improvements over previous versions but 
new problems and issues are discovered and noted for further improvements in the work. Issues 
with MUSAFIR v1.5 are discussed below and some solutions are suggested. 

 WiFi connectivity issues and IP related matters, connecting to Raspberry Pi when there is 
no display or keyboard/mouse attached, i.e. HEADLESS MDOE, requires that IP and 
network to which Raspberry Pi is connected to is known in advance. 
Solution: Have a python script check the connected WiFi Network and connect to the 
preferred network if needed, the script also would show the information on an LCD 
connected to Raspberry Pi. 
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 WiFi Connectivity allowed us to use ROS and ROS allowed publishing and subscribing 
of the data coming in from sensors and encoders in a very reliable and robust manner. 
However connectivity with MATLAB remained an issue and getting the ROS data in 
MATLAB. 
Solution: Use the Robotics ToolBox in MATLAB 2016b or 2017 which includes ability 
to create ROS nodes which connect with a ROS Master system and can get the data being 
published by other ROS nodes in the network. 

 Arduino and ROS Compatibility issues, as we were using an Arduino Nano for the low 
level control of motors, we were unable to completely implement ROS, down to the 
Arduino level as Arduino Nano does not have enough space in it. 
Solution: Use an intermediate layer for data transmission between Arduino and and 
Raspberry Pi. OR use an Arduino which can support ROS, like Arduino Due or Mega. 

 

5.5 MUSAFIR v2 

MUSAFIR v2 as seen in the pictures before, was a complete remake of the robot with better 
tyres for gripping on rough surfaces and a bigger body accommodate all the new sensor modules 
and the circuitry. The electronics on MUSAFIR v2 is mostly same as MUSAFIR v1.5, with 
addition of 2 VGA Cameras at the front and also space for some Ultra Sonic Sensors to be added 
later to the front of the Robot and a LIDAR on top. 
 
The Electronics onboard MUSAFIR v2 is listed below: 

 Sealed Lead Acid Battery, 12V, 7Ah 
 Buck Converters – 5V for Raspberry Pi and LIDAR 
 Motor H-Bridge v2 
 12V DC Geared Motor with Encoder (1500CPR) 
 Motor Controller v2 – Arduino Nano interface board 
 MPU-9150 – 9-Axis IMU 
 RP LIDAR A2 
 2x LogiTech USB Cameras 
 TPLINK WiFi Module 
 uBlox Neo 6m GPS Module 
 I2C 16x2 Text LCD Module 
 Analog Battery Voltage Monitoring Circuit 
 Power/Switch/Charger Circuitry 

 
The MUSAFIR v2 body was made of sheet metal, while the base was made of wood, wheels 
being made out of Teflon. The motors used for MUSAFIR v2 had a very high gear ratio along 
with encoders, resulting in slow but precise movement of the robot. We tested the MUSAFIR v2 
in the field, outside of the LAB environment by driving the robot on cement, asphalt and road 
surface where the performance of the robot and the wheels was satisfactory (after some 
modifications were made, as mentioned below). 
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5.5.1 MUSAFIR v2 Issues 

As MUSAFIR .v2 was more of a mechanical re-design than an electrical/electronic one, most of 
the issues and problems we observed were based on the mechanical work. The differential drive 
mechanism was a bit flawed, the robot motors had enough power, but due to being light, the 
wheels weren’t getting proper grip on the floor and there were issues with working with the 
onboard Electronics. 

 We had designed the robot motor placement to work as differential drive robot, however, 
unlike MUSAFIR v1 and v1.5 where the drive motors were in the center and the caster 
wheels at both ends of the robot, this time, we had the drive motors at the back and at the 
front side, 2 free wheels on each side of the robot. These free wheels not connected to the 
motor resulting in additional friction skidding of the robot. Solution: Have both front and 
back wheels synced using a chain mechanism in the next iteration of the robot, which is 
what we have also observed in all other robot designs on the Internet which use 
differential skid drive. 

 Weight of the robot was an issue and in a way that we had not anticipated, our robot 
wheels were not able to form proper grip on the floor as the weight was very less, we 
tested by adding dead weight at different places on the robot and observed the changes, 
which were positive making the robot move and turn properly. 
Solution: We added a Dead Weight at the back of the robot, just in between the drive 
wheels/motors, the weight was made from a metal piece, MS, solid rectangular piece. 

 As all the electronics was inside the metal chassis of the robot, we had to use long 
connecting wires for sensors which were placed in the robot upper body going to the 
base, and this was also needed for power switch, indicator LEDs and the charging port. 
Solution: We cut the metal cover in 2 pieces to allow for easy access to the electronics, 
this way, we did not need to replace the entire metal cover to work on the electronics. 

 Robot Status is something that was needed time and again, we needed to know the IP 
address, if the robot was even currently working or stuck in some processing loop and 
also needed to know the battery status. Solution: Add a Text LCD and indicator LEDs 
which showed us the current status of the robot and the updating of the LCD meant that 
the Raspberry Pi was working as well. 

 

5.6  MUSAFIR Robot Electronics Overview 

The MUSAFIR robots used Electronics that was designed in house and then the circuit designs 
were sent to China for PCB Fabrication. This section will discuss the Electronics used on 
MUSAFIR v1, v1.5 and MUSAFIR v2, very briefly as these have already been discussed in 
previous reports. 
 

 Sensor Shield 
 Motor Controller v1 
 Motor Controller v2 
 Motor Driver – H-Bridge v1 
 Motor Driver – H-Bridge v2 
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5.7 Components of Robot 

Level 0 - Robot Base: Mechanical, ElectroMechanical, Electrical, Core Safety 
 Robot Base 
 Wheels 
 Drive Motors + Encoders 
 Bumper Switches 
 Front Head lights 
 Battery 
 DC DC Boost Converter 
 Connector Board - Bumper/Encoder/Front Head Light 
 Power Panel 

o Battery Terminal 
o Switch - ON-OFF-Charge 
o On, Battery Good/Bad, Charge Indicator 
o Fuse 
o E-Stop Switch 
o Battery Brown Out Detector 

 

Level 0 to Level 1 - INTERFACE 
 Electrical Power Wires 

o 4x Motor Wires 
o 2x Battery Terminal, 12V 
o 2x Boost Converter Output, 24V 
o 2x Front Headlight Wires 

 Electronics Signal wires 
o 4x Encoder Interface 
o 2x 3.3V Supply / GND 
o 2x Bumper Switches 

 

 

Level 1 - Motor Control: Electrical, Electronics, Odometery, Velocity Control 
 Motor Controller 

Module: Arduino Mega 
https://www.arduino.cc/en/Main/arduinoBoardMega 

o Odometry 
 Dead Reckoning using Encoder Counts 
 Raw Encoder Count Interface 

o Control Methodology 
 Velocity based via PID 
 PWM Based 

o Motor Driver Current/Temperature Sensing/Threshold 
o Motor Driver Control Signals 
o HeadLights Control 
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o Bumper Sensor Interface 
 Motor Driver 

o H-Bridge 
Mosfet: IRLB8743 
https://goo.gl/Rhn5jc  

o Thermal Sensor 
IC: LM35 
http://www.ti.com/product/LM35  

o Current Sensor 
IC: ACS712 20a 
http://www.allegromicro.com/en/Products/Current-Sensor-ICs/Zero-To-Fifty-
Amp-Integrated-Conductor-Sensor-ICs/ACS712.aspx  

o Active Cooling 
 

Level 1 to Level 2 - INTERFACE 
 Electrical Power Wires 

o 1x Battery Terminal, 12V 
 Interface for Motor Controller - via USB  

 

Level 2 - Sensor Head: Core Process Electronics, Sensors 
 Raspberry Pi 3 

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/ 
 
 

 Sensor Interface PCB 
o RTC 

IC:DS1307 
https://www.maximintegrated.com/en/products/digital/real-time-
clocks/DS1307.html  

o Battery Level Monitoring 
IC: LM324 (Op-amp based) 

o 8-Bit MicroController for Analog/Digital IO via I2C 
MicroController: Atmega8 
http://www.microchip.com/wwwproducts/en/ATmega8  

o 3x Buck Converters - 12V to 5V 
 For Raspberry Pi 
 For Sensor Interface PCB Power 
 For USB Hub 

https://goo.gl/MVx56J  
o Connectors and Signal Conditioning Circuitry 

 GPS - UART via GPIO 
https://goo.gl/YvJ5Q9  

 6x (upto) UltraSonic Sensors - TRIG and PWM ECHO via GPIO 
Model No:  MB7380 
http://www.maxbotix.com/Ultrasonic_Sensors/MB7380.htm  
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 9-Axis IMU - I2C 
Model No: MPY9250 
https://goo.gl/sknx9o  

 Thermal Camera - I2C and SPI 
 4x (upto) Button Inputs - via GPIO 
 2x16 Text LCD - I2C 

https://www.sparkfun.com/products/255  
 DS18B20 Temeprature Sensor 

https://www.maximintegrated.com/en/products/analog/sensors-and-
sensor-interface/DS18B20.html  

 8x (upto) Digital I/O - via I2C 
 8x (upto) Analog I/O - via I2C 

 Interface to Motor Controller - via USB 
 Interface to ARM Stepper Controller - via USB 

o Stepper controller - via USB 
o Stepper driver 

Model No: tb6600 
https://goo.gl/z9MJMt  

 Powered USB Hub 
o 2x (upto) Camera - via USB 

Model No: C270h 
http://www.logitech.com/en-in/product/hd-webcam-c270h  

o RP LIDAR A2 - UART via USB 
https://www.seeedstudio.com/RPLIDAR-A2-The-Thinest-LIDAR-p-2687.html  

o WiFi Module - via USB 
Model No: WN7200ND 
http://www.tp-link.com/lk/download/TL-WN7200ND.html 
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Figure 20 MUSAFIR ver 1.0 schematic of sensor shield 

 
Figure 21 MUSAFIR ver 1.0 layout of sensor shield 
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Figure 22 Schematic of motor controller for MUSAFIR robot 

 
Figure 23 Layout of motor controller for MUSAFIR robot 
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Figure 24 Schematic of motor driver for MUSAFIR robot ver 1.0 

 
Figure 25 Layout of motor driver for MUSAFIR robot ver 1.0 
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Chapter 6. Sensor Fusion Techniques for determining the 

exact geo-location 

This chapter presents an approach for the determination of the robot position using both indoor 
as well as outdoor sensors: the INS, the GPS and the odometer. The proposed technique 
combines the signals from these sensors through sensor fusion. Here, the Kalman Filter has been 
to combine the position data obtained from INS and GPS, the KF filtered position data is then 
input to the complementary filter where it is combined with odometer based position data. For 
the case where GPS signal becomes unavailable, the Multi-layer Perceptron Neural Networks are 
employed to predict the robot’s position. The MLP neural networks are trained on the input-
target data when the GPS signal and the KF signal is available and tested to make the prediction 
for the robot’s location during the phase when GPS is off, i.e, during GPS outages. The position 
data predicted by the MLP NN is then fed to the complementary filter where this data is 
combined with the odometer based robot position data to obtain the final output for robot’s 
position. The proposed technique also takes into account the slippage problem with odometer. A 
fuzzy logic system is used here, to overcome the odometer slippage problem by appropriately 
adjusting the weights of the complementary filter whenever the condition for slippage occurs. 
The simulations for the proposed system are carried out in V-REP and MATLAB environments.  

 

6.1  Introduction  

Robot localization is an important aspect in R&D research areas where there is a need to control 
a robot. This paper proposes a technique for obtaining a robot’s location by utilizing the signals 
from various indoor as well as outdoor sensors. Several schemes have been proposed for the 
determination of precise information of an object’s position. 
 
 N.  Musavi and J. Keighobadi in their works have designed an adaptive fuzzy neuro-observer 
(AFNO) to apply on the integrated SINS-GPS system [1]. In this scheme, the outputs of INS 
from 3-axis accelerometers and 3-axis gyroscopes are used to construct an input vector. This 
vector along with the estimated state vector comprising of position velocity and attitude is 
provided as input to the fuzzy neural network (FNN) that generates an approximated uncertainty 
term and as a next step the full state linearized state space models are constructed. When the GPS 
signal is available, the dynamics of the estimated states are found using the state transition and 
input matrices, approximated uncertainty term obtained from FNN and the error between 
measured and outputs obtained from estimated states. This vector is then integrated to obtain the 
estimated state vector from which the output vector is calculated that contains the position and 
velocity information of an object.  The error between the output vector and the GPS 
measurement vector is the used to update the weights of FNN. When the GPS is lost, the 
dynamics of the estimated states are found using the state transition and input matrices, 
approximated uncertainty term obtained from FNN and the previous values of estimated state 
vector. A transformation is then applied on this vector using diffeomorphism. This transformed 
vector is integrated to obtain estimated   state vector comprising of position and velocity of the 
object. The major draw-back of the scheme is that it is complex and difficult to implement. 
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Further, it assumes a constant GPS outage of 1second only and does not propose a solution for 
longer GPS outages or signal loss. Further, the proposed scheme provides a solution for outdoor 
localization applications only.  
 
Jing Li et al. have developed a localization scheme based on Kalman Filters and artificial neural 
networks [2]. In their proposed scheme, the Kalman Filters and SINS to provide position 
information when the GPS is present and as the GPS signal becomes unavailable, the neural 
networks are used to train on the SINS and KF data stored in the database that was available 
during the presence of GPS signal and tested to predict the robot’s position based on the current 
SINS data. This scheme is effective during the presence and absence of GPS signal loss but the 
proposed scheme has some major drawbacks: in their proposed method, they have assumed fixed 
intervals of training and testing of the neural networks. However in practical situations, the 
availability of the GPS signal is not that certain. The time intervals for the GPS signals vary time 
to time and therefore, the neural network training and testing times cannot be assumed to be 
always fixed. Secondly this scheme does not provide a solution for very large GPS outages or 
when the GPS fails to provide position and velocity information for a long time. In such a case, 
the neural network may not be able to predict the correct position after a particular elapsed time. 
This is the case that can be considered for purely indoor applications where a robot enters a 
building where GPS signal is completely blocked. Our proposed scheme is based on the work by 
Jing Li et al. Our scheme removes the draw-backs of this scheme. It is simple to implement and 
is applicable for both indoor and outdoor applications.   
 

6.2  The Inertial navigation system  

6.2.1 The Data from INS: 

INS stands for Inertial Navigation System. It comprises of tri-axis accelerometers and 
gyroscopes. The accelerometers provide acceleration values in x, y and z directions. The 
gyroscope gives angular rates. Using acceleration values, an object’s velocity can be calculated 
by integration. Similarly, the object’s attitude information can be obtained by integrating the 
angular rates provided by the gyroscopes. The accelerations and angular rates obtained from the 
INS are in body frame co-ordinate system. Therefore, these values should be rotated   to convert 
these values to any appropriate world co-ordinate system before further processing. The 
conversion of INS values from body frame to world co-ordinate frame is discussed as follows. 

6.2.2  Converting INS Data From Body Frame To World Co-ordinates: 

As discussed above, an inertial navigation system is composed of both accelerometers and 
gyroscopes. The data from accelerometers give values in body frame, which is the frame 
attached to the body of the sensor. To convert these acceleration values from body frame to 

world co-ordinates, a direction cosine matrix (DCM) is required which is denoted by n
bC . In this 

paper, the geographic co-ordinate system – East-North-Up (ENU) frame is used. The DCM for 
converting from body frame to ENU frame is as follows: 
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( ) ( ) ( ) ( ) ( )
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c c s s s s c c s s s c

C s c c s s c c s s c s c

c s s c c

           

           

    

   
    
  

------ (1) 

Here, ‘c’ represents trigonometric function, ‘cosine’ and ‘s’ represents trigonometric function, 
‘sine’. Also, , ,   are roll pitch and yaw angles respectively also called ‘Euler Angles’. 

The body frame accelerations or velocities are then converted to world co-ordinates by vector 
multiplication with the DCM as described by equation (2) and (3) respectively. 

 na  = n
bC ba   ----- (2) 

                                                                          nv = n
bC bv    ------ (3) 

Where,  

na   represents acceleration vector in inertial navigation frame 

ba   represents acceleration vector in body frame 

nv
  represents acceleration vector in inertial navigation frame 

bv   represents acceleration vector in body frame 

 
The block diagram in fig 23 shows the conversion process from body frame to ENU inertial 
navigation frame. 
 

 

Figure 26 Conversion from Body frame to World Co-ordinates 

 
 

From equation (1) it can be noticed that calculation of DCM requires the euler angles: , ,   . 

These Euler angles can be calculated using the angular rate measurements from gyroscopes as 
follows [3]: 
 
1. First the initial values of four Euler parameters, e0, e1, e2, e3 are calculated using the initial 
values of roll, pitch and yaw angles , ,i i i    as: 

c( )c( )c( ) s( )s( )s( )
2 2 2 2 2 2

i i i i i i
oie

     
        ---- (4) 
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1
c( )c( )s( ) s( )s( )c( )

2 2 2 2 2 2i

i i i i i ie
     

     --- (5) 

2 c( )s( )c( ) s( )c( )s( )
2 2 2 2 2 2

i i i i i i
ie

     
      ---- (6) 

3 c( )s( )s( ) s( )c( )c( )
2 2 2 2 2 2

i i i i i i
ie

     
      --- (7) 

 
Here, ‘c’ represents trigonometric function, ‘cosine’ and‘s’ represents trigonometric function, 
‘sine’ 
2. Using the above initial values of euler parameters, the time trajectory calculated as: 

    0 1 2 3

1
( )

2
e e p e q e r      ---      (8) 

   
1 2 3

1
( )

2
oe e p e r e q       ----    (9) 

     2 3 1

1
( )

2
oe e q e p e r     ----     (10) 

                                                          3 1 2

1
( )

2
oe e r e q e p   -----     (11) 

3. Finally the Euler angles are calculated using the above calculated Euler parameters: 

1
1 3 2sin ( 2[ ])oe e e e     ---- (12) 

 

2 2 2 2
1 1 2 3

2 3 1
2

1 3 2

[ ]
cos (2[ ])

(1 4( ) )

o
o

o

e e e e
sign e e e e

e e e e
    
 

 
  --- (13) 

 
2 2 2 2

1 1 2 3
1 2 32

1 3 2

[ ]
cos (2[ ])

(1 4( ) )

o
o

o

e e e e
sign e e e e

e e e e
    
 

 
--- (14) 

Using the above Euler angles, the DCM matrix in (1) can be calculated. 

6.3 Global Positioning System (GPS) 

 

GPS stands for Global Positioning system. We can now determine the position of an object 

anywhere on the globe using the GPS. The GPS is able to provide accurate position and velocity 

information but the response of GPS is subjected to errors when there are situations like satellite 

blockage .Also in indoors, GPS signals are blocked by enclosed spaces such as tunnels or 

buildings [4].The position components obtained from the GPS have Gaussian noise 

characteristics [5] and therefore, for simulation purpose,  the GPS based position  can be 

modeled according to the following equation  [6]:   
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                                        _ _ * _GPS position Actual position Gaussian Noise   --- (15) 

 

Here, ‘ ’ is the standard deviation whose value can be varied in accordance with the availability 

or strength of the GPS signal [6]. 

 

According to the proposed scheme, whenever the GPS signal is available, to account for the 

errors in the GPS signal, the GPS based position is filtered using the Kalman filter sensor fusion 

scheme, where the GPS data combined with the INS data to obtain a better estimate of a robot’s 

position., the KF filtered position data is then combined with the odometer based position 

information using complimentary filter to obtain the final output. A detailed discussion of sensor 

fusion of GPS-INS using the Kalman Filter and KF – Odometer integration is presented in 

Section V.  

 

And when the GPS signal is unavailable, the Multi-layer perceptron network is trained and tested 

to predict the position output  in place of the GPS and the final output is obtained by fusing the 

MLP and odometer based position outputs using complimentary filter. This is presented in detail 

in Section IV. 

6.4 Odometer 

The odometer or (wheel sensor) is a sensor that provides the velocity information of a robot. 
Here, a robot’s movement is sensed with the wheel encoder. The velocity obtained from 
odometer can be integrated to obtain a robot’s position [6].An odometer is capable of providing 
position and velocity information in both the indoors and outdoors. However, the position 
obtained using odometer has large integration errors which should be corrected using some other 
mechanisms for localization. Therefore, in the proposed scheme, the odometer position data is 
combined with KF or MLP predicted position information in the presence and absence of GPS 
data respectively to obtain the final position output from the system. 

The position can be obtained from odometer based velocities as follows [4]: 

cos( )x v   ---------- (16) 

sin( )y v  ------------ (17) 

Where, ‘  ’is the yaw or heading angle of the robot. 

Like the INS the odometer data should also be converted from body frame to inertial navigation 

frame, i.e, ENU or other frame. Where, the superscript ‘b’ represents body frame and n
bC is the 

DCM matrix given in equation (1) 

ENU n b
OD b ODV C V ----- (18) 

Where, the superscript ‘b’ represents body frame and n
bC is the DCM matrix given in equation (1) 
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A drawback with odometer based positioning system is that when it suffers from wheel slip it 

often results in large localization estimation errors. To correct these localization errors, a system 

based on fuzzy rules is designed to find the weight of the fusion parameter that is used to fuse the 

odometer based position data with either the Kalman filter or MLP based position data 

depending on the availability of the GPS signal. 

6.5 GPS-INS Sensor fusion 

Sensor Fusion is the process of combining the output signals from different so as to obtain a 

more acceptable signal than the one obtained from the individual sensors. Sensor fusion reduces 

noise and combines the advantages of different sensors [7]. In this scheme, sensor fusion of GPS 

and INS is accomplished using Kalman Filter. The Kalman Filter (KF) algorithm and Kalman 

Filter formulation for the GPS-INS sensor fusion are discussed as follows [8]: 

 

6.5.1 The Kalman Filter: 

The Kalman filter is a well-known sensor fusion technique that comprises of two important 

mechanisms: prediction and update. The steps involved in Kalman Filter algorithm are described 

as follows: 

 

1. Initialize the values of states and error covariance matrices    

ˆ,xo Po ----- (19) 

2. Predict the state and error covariance. 

1
ˆ ˆ

k kx Ax Bu  ----- (20) 

                                                                          1
T

k kP AP A Q
  ----- (21) 

Where, A is the state transition matrix and B is the control input matrix which applies the effect 

of the   input 'u' to the state vector. Q is the process noise covariance matrix and P is the error 

covariance matrix. 

      

  3. Find the Kalman Gain  

1( )T T
K K KK P H HP H R    ----- (22) 

Where,   H is the observation matrix and R is the measurement noise covariance matrix 

 

4. Calculate the state estimate: 

ˆ ˆ ˆ( )k k kx x K z Hx    ----- (23) 
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5. Calculate the error covariance: 

 

k k kP P KHP   ----- (24) 

6.5.2 Kalman Filter Formulation for GPS –INS Sensor Fusion: 

For combing the data from GPS and INS for better position estimation, a 6 state Kalman filter is 

implemented. The designed Kalman filter matrices are as follows: 

1. The State Matrix (X): 

The state matrix is: 

X= [ Ea  Na  Ev  Nv Ex  Ey  ] ----- (25) 

Where, 

Ea   is the robot acceleration along east. 

Na   is the robot acceleration along north. 

Ev   is the robot velocity along east 

Nv   is the robot velocity along north 

Ex   is the robot position in the east direction 

Ey   is the robot position in the north direction 

 

The system states are initialized to all zeros assuming no prior knowledge: 

0 1 6[0 ]XX  ----- (26) 

2. The State Transition Matrix (A): 

The state transition matrix has been assigned the following values: 

2

2

1 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1
0 0 1 0

2

1
0 0 0 1

2

t

tA

t t

t t

 
 
 
 
 

 
 

  
 
 

   

----- (27) 

Where t  is the sampling time between GPS signal.  

3. The Input Matrix- (B): 
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Since, there is no input, the input matrix ‘B’ is zero. 

6 1[0 ]xB  ----- (28) 

4. The Measurement Matrix (Z): 

The measurement matrix ‘Z’ is composed of sensor measurements from accelerometers and GPS 

position co-ordinates. 

z = [ Ev  Nv   Ex  Ny  ]  ----- (29) 

Where, Ev  Nv   Ex  Ny  have the same definitions as described above. 

4. The Observation Matrix (H): 

The observation matrix ‘H’ is: 

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

H

 
 
 
 
 
 

----- (30) 

4. The Process Noise Covariance Matrix (Q): 

The process noise covariance matrix is assigned the following values: 

 6 60.1 XQ  ----- (31) 

5. The Measurement Noise Covariance Matrix (R): 

The measurement noise covariance matrix R  is: 
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2

2

2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
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E

N

E

N

a

a

v

v

x

y

R













 
 
 
 
 
 
 
 
 
  

----- (32) 

 
  6. The Error Covariance Matrix (P)                                                     

The  error covariance matrix P is initialized to: 

 0P Q   
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6.5.3  KF-Odometer Integration: 

The final output obtained from the system in the presence of GPS signals is obtained by combing 

the position outputs estimated from the KF and odometer using the complementary filter as 

follows. 

Final Output =  (KFPosition) + (1- ) (Odometer Position) ----- (33) 

Where ‘ ’ is the weighting/fusion parameter which is used here to fuse the two position outputs 
from  KF and odometer. The range of ‘ ’ is: 0 1   
 

6.6 Multilayer Perceptron Networks for prediction position data 

In the proposed scheme, the Multi-layer perceptron neural networks (MLPNN) are employed to 

predict the robot’s position in the absence of GPS signals. The structure of MLP neural networks 

and the MLP -Odometer integration scheme is also discussed in this section. 

6.6.1 The Multi-Layer Perceptron Architecture: 

The structure of MLP neural networks is shown in Fig 24.Its structure consist of  an input layer, 

one or more hidden layers for processing and one output layer. Each node in the MLPNN is 

connected with weights. MLPNN are an effective tool for regression, classification and non-

linear function fitting problems [2]. 

 

Figure 27 The MLP Architecture 

The output of each node is given by: 

1 2 3
1 2 3( ...... )m

i i i i i my f w x w x w x w x    ----- (34) 
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Or
 

j
i i j

j

y w x  ----- (35) 

Where, ‘ ix  ’ is the input from the node ‘j’ of the input data layer ‘ j
iw ’ is the weight connecting 

input node ‘j’ to a neuron ‘i’ in the next layer.  ‘f’ is the activation function. 
 

6.6.2 MLP-INS Integration Scheme during the unavailability of GPS signal: 

When no GPS signals are available, i.e, during GPS outages, the Kalman filter cannot be used to 

predict the robot’s position data. And we are left with the INS system only. In this phase, 

however, we utilize the accelerometer and gyroscope data obtained from the inertial navigation 

system to train MLPNN. The multi-layer perceptron neural network will be trained on the input-

output data when the GPS was available. And the trained MLP network is then tested to predict 

the robot’s position when there’s no GPS and Kalman filtered signals available. In this scheme, 

two Multi-layer Perceptron Neural Networks have been created, one for predicting the x- 

component of the robot’s position and another for predicting the y-component of the robot’s 

position. The designed architecture for both the MLP neural networks is [8 x 15 x 1].i.e, for both 

the MLPNN, there are 8 inputs , one hidden / processing layer comprising of 15 neurons and 1 

output layer neuron. Levenberg-Marquardt back-propagation algorithm is used to train the MLP 

networks. 

 

The MLP networks used to predict the position has the following inputs and targets. 

A. Input and Targets for MLP 1: 

Inputs: [ Ev Nv Uv Ev Nv Uv    ]    

Targets: [ x ]     

 
B. Input and Targets for MLP 2: 

Inputs: [ Ev Nv Uv Ev Nv Uv    ] 

Targets: [ y ]    

 

Where, 

Ev Nv Uv    are velocities in ENU inertial frame 

Ev Nv Uv  are cumulative velocities in ENU inertial frame 

      is the yaw angle 

    is the cumulative yaw angle 
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   x     is the robot’s position component along East direction in the ENU frame 

   y    is the robot’s position component along North direction in the ENU frame 

 

The training and testing phases of Multilayer Perceptron Networks are shown in Fig 25 and Fig 

26 respectively. 

 

6.6.3 MLP-Odometer Integration: 

The final output obtained from the system in the absence of GPS signals is obtained by combing 

the position outputs from the MLP and odometer using the complementary filter as follows. 

Final Output =  (MLP Position) + (1- ) (Odometer Position) ----- (36) 

Where ‘ ’ is the weighting/fusion parameter which is used here to fuse the two position outputs 
from MLP and odometer. The range of ‘ ’ is: 0 1   

 
Figure 28 MLP Training Phase 



52 
 

 
Figure 29 MLP Testing Phase 

 

6.7 Fuzzy System to incorporate Robot Slippage 

As described in Section IV, when the odometer suffers from wheel slippage, it registers wrong 

position readings because the wheels are constantly moving but the object’s position almost 

remain constant .This position error is eliminated with a fuzzy system that compares the high 

pass filtered velocity outputs of both the INS and odometer by calculating the error between the 

two sensor readings and generates a suitable value of the fusion parameter as output. 

A. Fuzzy System Inputs and Outputs: 

The designed fuzzy logic system has the following inputs and outputs 

Input(s): error between high pass filtered velocity outputs of both the INS and odometer (e). 

Output(s): the fusion parameter /(α) ;  

The range of ‘α’ is between ‘0’ and ‘1’. 

B. Fuzzy Rule Base: 

The rule base for the fuzzy logic system is as follows: 

Rule 1: If error is zero then fusion parameter is medium. 

Rule 2: If error is large then fusion parameter is small. 

Rule 3: If error is small then fusion parameter is large. 
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C. Fuzzy Membership Functions: 

The membership functions for input and ouput are as follows: 

 

Figure 30 Membership Function for input error(e) 

 

Figure 31 Membership Function for output-fusion parameter (α) 

 

6.8 Simulation results 

The simulation results are generated for the following three test cases: 

6.8.1 Case-I:  KF/GPS signal is available and there’s odometer wheel slippage: 

Fig 29(a) and (b) show the simulation result for the case where the GPS and so the KF signal is 

available, the KF and odometer fused output is shown in magenta .It can be the odometer wheel 

slippage is detected by the fuzzy logic system correctly. This is shown by the cyan color 

superimposed on the final output in magenta. 
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(a)  

(b) 

 
(c) 

 
(d) 

Figure 32 Simulation results for case 1 

6.8.2 Case-II:  KF/GPS signal is unavailable and there’s odometer wheel slippage: 

Fig 30(a) and (b) show the simulation result for the case where the GPS and so the KF signal is 

available for time t = 0 to 750 seconds and the GPS signal becoming unavailable for the time t = 

751 to 950 seconds, the KF and odometer fused output is shown in magenta .During this time 

interval, MLP network is trained and tested to predict the robot’s position whereas in this time 

interval, the odometer slippage is also considered. the MLP and odometer fused output is shown 

in cyan It can be observed that the odometer wheel slippage is detected by the fuzzy logic system 

correctly. This is shown by the yellow colored line superimposed on the final output in cyan. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

  

Figure 33 Simulation results for case 2 
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6.8.3 Case-III: KF /GPS signal is unavailable and there’s no odometer wheel slippage: 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 34 Simulation results for case 3 

Fig 31(a) and (b) show the simulation result for the case where the GPS and so the KF signal is 
unavailable for time t = 100 to 125,t= 720 to 750 and t = 900 to 1000 seconds and during these 
time intervals no wheel slippage is considered. The KF and odometer fused output is shown in 
magenta and the MLP and odometer fused output is shown in magenta .And the fuzzy logic 
system correctly identifies the no slippage condition and adjusts the fusion parameter 
accordingly.  
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6.9 Conclusion 

In this chapter, we have proposed a technique for the precise localization of a robot. The 

proposed scheme is simple to implement and provides   localization solution in both indoor and 

outdoor applications. Further a fuzzy logic Mamdani system has been developed to minimize the 

positioning errors in the odometer due to slippage condition. The algorithm was successfully 

applied on the data obtained from sensors in V-REP environment.   
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Chapter 7. Improvements in the design of the mechanical 

structure of IMR 

7.1 Tank based design ver 1.0 

 

 

Figure 35 3D Model of tank based robot version 1 
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Figure 36 Actual model of tank based robot version 1.0 

 

7.2 Tank based design ver 2.0 
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Figure 37 3D Model of tank based robot version 2 

 

Figure 38 Exploded view 
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7.3 Problems and challenges faced in the initial porotype 

 

Figure 39 Internal diagram with motors 

 

 

 

 

 

 

 

 

Figure 40 Actual model of tank based robot version 2 
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Figure 41 Actual internal design of tank based robot version 2 

7.4 Wheeled based robot version 1.0 

 

Figure 42 Wheeled based robot version 1.0 

 



63 
 

 

Figure 43 Wheeled based robot version 1.0 with sensor placement 

 

Figure 44 3D view of wheeled based robot version 1.0 with sensor placement 
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7.5 Wheeled based robot version 2.0 

 

Figure 45 Wheeled based robot version 2.0 

 

Figure 46 Wheeled based robot version 2.0 with sensor placement 
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Figure 47 Actual model of wheeled based robot version 2.0 
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